当前位置: 首页 > news >正文

028_分布式部署架构

028_分布式部署架构

概述

本文档介绍如何设计和实现Claude应用的分布式部署架构,包括负载均衡、缓存策略、服务发现、容错机制等。

微服务架构设计

1. 服务拆分策略

from abc import ABC, abstractmethod
from typing import Dict, Any, Optional
import asyncio
import aiohttp
import json
from dataclasses import dataclass
from enum import Enumclass ServiceType(Enum):GATEWAY = "gateway"AUTH = "auth"CONVERSATION = "conversation"TRANSLATION = "translation"CONTENT_FILTER = "content_filter"CACHE = "cache"METRICS = "metrics"@dataclass
class ServiceConfig:name: strservice_type: ServiceTypehost: strport: inthealth_check_path: str = "/health"version: str = "1.0.0"replicas: int = 1max_requests_per_second: int = 100class BaseService(ABC):def __init__(self, config: ServiceConfig):self.config = configself.is_healthy = Trueself.metrics = {'requests_processed': 0,'errors_count': 0,'avg_response_time': 0}@abstractmethodasync def start(self):"""启动服务"""pass@abstractmethodasync def stop(self):"""停止服务"""pass@abstractmethodasync def health_check(self) -> Dict[str, Any]:"""健康检查"""passasync def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:"""处理请求的通用包装器"""start_time = asyncio.get_event_loop().time()try:self.metrics['requests_processed'] += 1result = await self._process_request_impl(request)# 更新响应时间response_time = asyncio.get_event_loop().time() - start_timeself._update_avg_response_time(response_time)return {'status': 'success','data': result,'service': self.config.name,'response_time': response_time}except Exception as e:self.metrics['errors_count'] += 1response_time = asyncio.get_event_loop().time() - start_timereturn {'status': 'error','error': str(e),'service': self.config.name,'response_time': response_time}@abstractmethodasync def _process_request_impl(self, request: Dict[str, Any]) -> Any:"""实际的请求处理逻辑"""passdef _update_avg_response_time(self, new_time: float):"""更新平均响应时间"""current_avg = self.metrics['avg_response_time']total_requests = self.metrics['requests_processed']# 简单的移动平均self.metrics['avg_response_time'] = ((current_avg * (total_requests - 1) + new_time) / total_requests)# Claude服务实现
class ClaudeService(BaseService):def __init__(self, config: ServiceConfig, anthropic_client):super().__init__(config)self.client = anthropic_clientself.conversation_manager = Noneasync def start(self):"""启动Claude服务"""# 初始化必要的组件self.is_healthy = Trueprint(f"Claude service {self.config.name} started on {self.config.host}:{self.config.port}")async def stop(self):"""停止Claude服务"""self.is_healthy = Falseprint(f"Claude service {self.config.name} stopped")async def health_check(self) -> Dict[str, Any]:"""健康检查"""# 检查与Claude API的连接try:# 简单的测试请求response = await self._make_test_request()return {'status': 'healthy','service': self.config.name,'version': self.config.version,'metrics': self.metrics,'api_connection': 'ok'}except Exception as e:self.is_healthy = Falsereturn {'status': 'unhealthy','service': self.config.name,'error': str(e)}async def _process_request_impl(self, request: Dict[str, Any]) -> Any:"""处理Claude请求"""messages = request.get('messages', [])model = request.get('model', 'claude-3-5-sonnet-20241022')max_tokens = request.get('max_tokens', 1000)# 调用Claude APIresponse = self.client.messages.create(model=model,messages=messages,max_tokens=max_tokens)return {'content': response.content[0].text,'usage': {'input_tokens': response.usage.input_tokens,'output_tokens': response.usage.output_tokens}}async def _make_test_request(self):"""发送测试请求"""return self.client.messages.create(model="claude-3-5-sonnet-20241022",messages=[{"role": "user", "content": "test"}],max_tokens=10)# 认证服务
class AuthService(BaseService):def __init__(self, config: ServiceConfig):super().__init__(config)self.api_keys = {}  # 实际应使用数据库self.rate_limits = {}async def start(self):self.is_healthy = Trueprint(f"Auth service started on {self.config.host}:{self.config.port}")async def stop(self):self.is_healthy = Falseasync def health_check(self) -> Dict[str, Any]:return {'status': 'healthy','service': self.config.name,'version': self.config.version,'metrics': self.metrics}async def _process_request_impl(self, request: Dict[str, Any]) -> Any:"""处理认证请求"""api_key = request.get('api_key')action = request.get('action', 'validate')if action == 'validate':return await self._validate_api_key(api_key)elif action == 'check_rate_limit':return await self._check_rate_limit(api_key)else:raise ValueError(f"Unknown action: {action}")async def _validate_api_key(self, api_key: str) -> Dict[str, Any]:"""验证API密钥"""# 简化的验证逻辑if api_key and api_key.startswith('sk-'):return {'valid': True,'user_id': f"user_{hash(api_key) % 10000}",'tier': 'standard'}else:return {'valid': False}async def _check_rate_limit(self, api_key: str) -> Dict[str, Any]:"""检查速率限制"""# 简化的速率限制检查current_count = self.rate_limits.get(api_key, 0)if current_count < 100:  # 假设限制为100请求/小时self.rate_limits[api_key] = current_count + 1return {'allowed': True,'remaining': 100 - current_count - 1}else:return {'allowed': False,'remaining': 0,'reset_time': 3600  # 1小时后重置}# 缓存服务
class CacheService(BaseService):def __init__(self, config: ServiceConfig):super().__init__(config)self.cache = {}  # 实际应使用Redisself.ttl = {}async def start(self):self.is_healthy = Trueprint(f"Cache service started on {self.config.host}:{self.config.port}")async def stop(self):self.is_healthy = Falseasync def health_check(self) -> Dict[str, Any]:return {'status': 'healthy','service': self.config.name,'cache_size': len(self.cache),'metrics': self.metrics}async def _process_request_impl(self, request: Dict[str, Any]) -> Any:"""处理缓存请求"""action = request.get('action')key = request.get('key')if action == 'get':return await self._get(key)elif action == 'set':value = request.get('value')ttl = request.get('ttl', 3600)return await self._set(key, value, ttl)elif action == 'delete':return await self._delete(key)else:raise ValueError(f"Unknown action: {action}")async def _get(self, key: str) -> Dict[str, Any]:"""获取缓存值"""if key in self.cache:return {'found': True,'value': self.cache[key]}else:return {'found': False}async def _set(self, key: str, value: Any, ttl: int) -> Dict[str, Any]:"""设置缓存值"""self.cache[key] = value# 简化的TTL处理return {'success': True}async def _delete(self, key: str) -> Dict[str, Any]:"""删除缓存值"""if key in self.cache:del self.cache[key]return {'deleted': True}else:return {'deleted': False}

2. 服务发现与注册

import asyncio
import aiohttp
from datetime import datetime, timedelta
from typing import List, Dictclass ServiceRegistry:def __init__(self):self.services = {}  # service_name -> [ServiceInstance]self.health_check_interval = 30  # 30秒self.health_check_task = Noneasync def start(self):"""启动服务注册中心"""self.health_check_task = asyncio.create_task(self._periodic_health_check())print("Service registry started")async def stop(self):"""停止服务注册中心"""if self.health_check_task:self.health_check_task.cancel()print("Service registry stopped")def register_service(self,service_name: str,instance_id: str,host: str,port: int,metadata: Dict[str, Any] = None):"""注册服务实例"""instance = ServiceInstance(service_name=service_name,instance_id=instance_id,host=host,port=port,metadata=metadata or {})if service_name not in self.services:self.services[service_name] = []# 移除已存在的实例(如果有)self.services[service_name] = [s for s in self.services[service_name]if s.instance_id != instance_id]# 添加新实例self.services[service_name].append(instance)print(f"Service registered: {service_name}/{instance_id}")def deregister_service(self, service_name: str, instance_id: str):"""注销服务实例"""if service_name in self.services:self.services[service_name] = [s for s in self.services[service_name]if s.instance_id != instance_id]# 如果没有实例了,删除服务if not self.services[service_name]:del self.services[service_name]print(f"Service deregistered: {service_name}/{instance_id}")def discover_services(self, service_name: str) -> List['ServiceInstance']:"""发现服务实例"""return [instance for instance in self.services.get(service_name, [])if instance.is_healthy]def get_all_services(self) -> Dict[str, List['ServiceInstance']]:"""获取所有服务"""return self.services.copy()async def _periodic_health_check(self):"""定期健康检查"""while True:try:await self._check_all_services_health()await asyncio.sleep(self.health_check_interval)except asyncio.CancelledError:breakexcept Exception as e:print(f"Health check error: {e}")await asyncio.sleep(5)async def _check_all_services_health(self):"""检查所有服务的健康状态"""tasks = []for service_name, instances in self.services.items():for instance in instances:task = self._check_instance_health(instance)tasks.append(task)if tasks:await asyncio.gather(*tasks, return_exceptions=True)async def _check_instance_health(self, instance: 'ServiceInstance'):"""检查单个实例的健康状态"""try:async with aiohttp.ClientSession() as session:url = f"http://{instance.host}:{instance.port}/health"async with session.get(url,timeout=aiohttp.ClientTimeout(total=5)) as response:if response.status == 200:instance.mark_healthy()else:instance.mark_unhealthy()except Exception:instance.mark_unhealthy()@dataclass
class ServiceInstance:service_name: strinstance_id: strhost: strport: intmetadata: Dict[str, Any]is_healthy: bool = Truelast_health_check: datetime = Noneconsecutive_failures: int = 0def __post_init__(self):self.last_health_check = datetime.now()def mark_healthy(self):"""标记为健康"""self.is_healthy = Trueself.consecutive_failures = 0self.last_health_check = datetime.now()def mark_unhealthy(self):"""标记为不健康"""self.consecutive_failures += 1# 连续失败3次才标记为不健康if self.consecutive_failures >= 3:self.is_healthy = Falseself.last_health_check = datetime.now()def get_endpoint(self) -> str:"""获取服务端点"""return f"http://{self.host}:{self.port}"# 负载均衡器
class LoadBalancer:def __init__(self, service_registry: ServiceRegistry):self.registry = service_registryself.strategies = {'round_robin': self._round_robin,'random': self._random_selection,'least_connections': self._least_connections,'weighted': self._weighted_selection}self.round_robin_counters = {}def select_instance(self,service_name: str,strategy: str = 'round_robin') -> Optional[ServiceInstance]:"""选择服务实例"""instances = self.registry.discover_services(service_name)if not instances:return Noneif len(instances) == 1:return instances[0]selection_func = self.strategies.get(strategy, self._round_robin)return selection_func(service_name, instances)def _round_robin(self,service_name: str,instances: List[ServiceInstance]) -> ServiceInstance:"""轮询策略"""if service_name not in self.round_robin_counters:self.round_robin_counters[service_name] = 0index = self.round_robin_counters[service_name] % len(instances)self.round_robin_counters[service_name] += 1return instances[index]def _random_selection(self,service_name: str,instances: List[ServiceInstance]) -> ServiceInstance:"""随机选择策略"""import randomreturn random.choice(instances)def _least_connections(self,service_name: str,instances: List[ServiceInstance]) -> ServiceInstance:"""最少连接策略(简化版)"""# 这里简化为随机选择,实际应跟踪连接数return self._random_selection(service_name, instances)def _weighted_selection(self,service_name: str,instances: List[ServiceInstance]) -> ServiceInstance:"""加权选择策略"""# 基于实例的元数据中的权重weights = []for instance in instances:weight = instance.metadata.get('weight', 1)weights.append(weight)import randomtotal_weight = sum(weights)r = random.uniform(0, total_weight)cumulative = 0for i, weight in enumerate(weights):cumulative += weightif r <= cumulative:return instances[i]return instances[0]

缓存与存储策略

1. 分布式缓存系统

import redis
import json
import hashlib
from typing import Any, Optional, Union
import pickleclass DistributedCacheManager:def __init__(self,redis_hosts: List[str],cache_prefix: str = "claude_app",default_ttl: int = 3600):self.cache_prefix = cache_prefixself.default_ttl = default_ttl# 创建Redis连接池self.redis_clients = []for host in redis_hosts:host_parts = host.split(':')redis_host = host_parts[0]redis_port = int(host_parts[1]) if len(host_parts) > 1 else 6379client = redis.Redis(host=redis_host,port=redis_port,decode_responses=False,  # 用于存储二进制数据socket_connect_timeout=5,socket_timeout=5)self.redis_clients.append(client)def _get_client(self, key: str) -> redis.Redis:"""基于key选择Redis客户端(一致性哈希)"""hash_value = int(hashlib.md5(key.encode()).hexdigest(), 16)index = hash_value % len(self.redis_clients)return self.redis_clients[index]def _make_key(self, key: str) -> str:"""生成缓存键"""return f"{self.cache_prefix}:{key}"async def get(self, key: str) -> Optional[Any]:"""获取缓存值"""cache_key = self._make_key(key)client = self._get_client(cache_key)try:data = client.get(cache_key)if data is None:return None# 反序列化数据return pickle.loads(data)except Exception as e:print(f"Cache get error for key {key}: {e}")return Noneasync def set(self,key: str,value: Any,ttl: Optional[int] = None) -> bool:"""设置缓存值"""cache_key = self._make_key(key)client = self._get_client(cache_key)try:# 序列化数据serialized_value = pickle.dumps(value)# 设置TTLexpire_time = ttl or self.default_ttlreturn client.setex(cache_key, expire_time, serialized_value)except Exception as e:print(f"Cache set error for key {key}: {e}")return Falseasync def delete(self, key: str) -> bool:"""删除缓存值"""cache_key = self._make_key(key)client = self._get_client(cache_key)try:return bool(client.delete(cache_key))except Exception as e:print(f"Cache delete error for key {key}: {e}")return Falseasync def exists(self, key: str) -> bool:"""检查键是否存在"""cache_key = self._make_key(key)client = self._get_client(cache_key)try:return bool(client.exists(cache_key))except Exception as e:print(f"Cache exists error for key {key}: {e}")return False# 智能缓存策略
class SmartCacheStrategy:def __init__(self, cache_manager: DistributedCacheManager):self.cache_manager = cache_managerself.cache_policies = {'conversation': {'ttl': 1800, 'compress': True},  # 30分钟'translation': {'ttl': 7200, 'compress': False},  # 2小时'user_profile': {'ttl': 3600, 'compress': False},  # 1小时'api_response': {'ttl': 300, 'compress': True}    # 5分钟}async def cache_conversation(self,conversation_id: str,messages: List[Dict],user_id: str) -> bool:"""缓存对话数据"""key = f"conversation:{conversation_id}"# 可选:压缩大对话policy = self.cache_policies['conversation']data = {'messages': messages,'user_id': user_id,'cached_at': datetime.now().isoformat()}if policy['compress'] and len(json.dumps(data)) > 10000:data = self._compress_conversation(data)return await self.cache_manager.set(key,data,ttl=policy['ttl'])async def get_conversation(self,conversation_id: str) -> Optional[Dict]:"""获取缓存的对话"""key = f"conversation:{conversation_id}"data = await self.cache_manager.get(key)if data and 'compressed' in data:data = self._decompress_conversation(data)return dataasync def cache_api_response(self,request_hash: str,response: Dict[str, Any]) -> bool:"""缓存API响应"""key = f"api_response:{request_hash}"policy = self.cache_policies['api_response']return await self.cache_manager.set(key,response,ttl=policy['ttl'])async def get_cached_api_response(self,request_hash: str) -> Optional[Dict]:"""获取缓存的API响应"""key = f"api_response:{request_hash}"return await self.cache_manager.get(key)def _compress_conversation(self, data: Dict) -> Dict:"""压缩对话数据(简化版)"""import gzipmessages_json = json.dumps(data['messages'])compressed_messages = gzip.compress(messages_json.encode())return {'compressed': True,'messages': compressed_messages,'user_id': data['user_id'],'cached_at': data['cached_at']}def _decompress_conversation(self, data: Dict) -> Dict:"""解压缩对话数据"""import gzipdecompressed_messages = gzip.decompress(data['messages']).decode()messages = json.loads(decompressed_messages)return {'messages': messages,'user_id': data['user_id'],'cached_at': data['cached_at']}# 缓存预热和失效策略
class CacheWarmupManager:def __init__(self, cache_strategy: SmartCacheStrategy):self.cache_strategy = cache_strategyself.warmup_tasks = []async def warmup_user_data(self, user_id: str):"""预热用户数据"""# 预加载用户的最近对话recent_conversations = await self._get_recent_conversations(user_id)tasks = []for conv in recent_conversations[:5]:  # 只预热最近5个对话task = self._warmup_conversation(conv['id'])tasks.append(task)if tasks:await asyncio.gather(*tasks, return_exceptions=True)async def _warmup_conversation(self, conversation_id: str):"""预热单个对话"""# 检查是否已缓存cached = await self.cache_strategy.get_conversation(conversation_id)if not cached:# 从数据库加载并缓存conversation_data = await self._load_conversation_from_db(conversation_id)if conversation_data:await self.cache_strategy.cache_conversation(conversation_id,conversation_data['messages'],conversation_data['user_id'])async def _get_recent_conversations(self, user_id: str) -> List[Dict]:"""获取用户最近的对话(模拟)"""# 实际应从数据库查询return [{'id': f'conv_{user_id}_{i}', 'updated_at': datetime.now()}for i in range(10)]async def _load_conversation_from_db(self, conversation_id: str) -> Optional[Dict]:"""从数据库加载对话(模拟)"""# 实际应从数据库查询return {'messages': [{'role': 'user', 'content': f'Message in {conversation_id}'}],'user_id': 'user123'}

2. 数据分片与分区

class DatabaseShardManager:def __init__(self, shard_configs: List[Dict]):self.shards = {}self.shard_ring = []for config in shard_configs:shard_id = config['shard_id']self.shards[shard_id] = DatabaseShard(config)# 构建一致性哈希环for i in range(config.get('virtual_nodes', 100)):hash_value = self._hash(f"{shard_id}:{i}")self.shard_ring.append((hash_value, shard_id))# 排序哈希环self.shard_ring.sort()def _hash(self, key: str) -> int:"""计算哈希值"""return int(hashlib.md5(key.encode()).hexdigest(), 16)def get_shard(self, key: str) -> 'DatabaseShard':"""根据键获取对应的分片"""hash_value = self._hash(key)# 在哈希环中找到第一个大于等于hash_value的节点for ring_hash, shard_id in self.shard_ring:if ring_hash >= hash_value:return self.shards[shard_id]# 如果没找到,返回第一个节点(环形)return self.shards[self.shard_ring[0][1]]async def save_conversation(self,conversation_id: str,conversation_data: Dict):"""保存对话到相应分片"""shard = self.get_shard(conversation_id)await shard.save_conversation(conversation_id, conversation_data)async def load_conversation(self,conversation_id: str) -> Optional[Dict]:"""从相应分片加载对话"""shard = self.get_shard(conversation_id)return await shard.load_conversation(conversation_id)async def save_user_data(self,user_id: str,user_data: Dict):"""保存用户数据"""shard = self.get_shard(user_id)await shard.save_user_data(user_id, user_data)async def get_shard_stats(self) -> Dict[str, Any]:"""获取分片统计信息"""stats = {}for shard_id, shard in self.shards.items():stats[shard_id] = await shard.get_stats()return statsclass DatabaseShard:def __init__(self, config: Dict):self.shard_id = config['shard_id']self.host = config['host']self.port = config['port']self.database = config['database']self.connection_pool = None# 统计信息self.stats = {'total_conversations': 0,'total_users': 0,'storage_size': 0,'last_updated': datetime.now()}async def connect(self):"""连接到数据库"""# 这里应该初始化真实的数据库连接print(f"Connected to shard {self.shard_id} at {self.host}:{self.port}")async def save_conversation(self,conversation_id: str,conversation_data: Dict):"""保存对话数据"""# 实际应保存到数据库self.stats['total_conversations'] += 1self.stats['last_updated'] = datetime.now()print(f"Saved conversation {conversation_id} to shard {self.shard_id}")async def load_conversation(self,conversation_id: str) -> Optional[Dict]:"""加载对话数据"""# 实际应从数据库查询return {'id': conversation_id,'messages': [],'created_at': datetime.now().isoformat()}async def save_user_data(self, user_id: str, user_data: Dict):"""保存用户数据"""self.stats['total_users'] += 1self.stats['last_updated'] = datetime.now()async def get_stats(self) -> Dict[str, Any]:"""获取分片统计信息"""return {'shard_id': self.shard_id,'host': self.host,'port': self.port,**self.stats}

容错与恢复

1. 服务容错机制

import asyncio
from enum import Enum
from typing import Callable, Anyclass CircuitBreakerState(Enum):CLOSED = "closed"OPEN = "open"HALF_OPEN = "half_open"class CircuitBreaker:def __init__(self,failure_threshold: int = 5,recovery_timeout: int = 60,expected_exception: type = Exception):self.failure_threshold = failure_thresholdself.recovery_timeout = recovery_timeoutself.expected_exception = expected_exceptionself.failure_count = 0self.last_failure_time = Noneself.state = CircuitBreakerState.CLOSEDasync def call(self, func: Callable, *args, **kwargs) -> Any:"""执行函数调用with熔断保护"""if self.state == CircuitBreakerState.OPEN:if self._should_attempt_reset():self.state = CircuitBreakerState.HALF_OPENelse:raise Exception("Circuit breaker is OPEN")try:result = await func(*args, **kwargs)self._on_success()return resultexcept self.expected_exception as e:self._on_failure()raisedef _should_attempt_reset(self) -> bool:"""检查是否应该尝试重置"""if self.last_failure_time is None:return Falsereturn (asyncio.get_event_loop().time() - self.last_failure_time > self.recovery_timeout)def _on_success(self):"""成功时的处理"""self.failure_count = 0self.state = CircuitBreakerState.CLOSEDdef _on_failure(self):"""失败时的处理"""self.failure_count += 1self.last_failure_time = asyncio.get_event_loop().time()if self.failure_count >= self.failure_threshold:self.state = CircuitBreakerState.OPEN# 服务容错包装器
class FaultTolerantService:def __init__(self,primary_service: BaseService,fallback_services: List[BaseService] = None,circuit_breaker: CircuitBreaker = None):self.primary_service = primary_serviceself.fallback_services = fallback_services or []self.circuit_breaker = circuit_breaker or CircuitBreaker()self.current_service = primary_serviceasync def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:"""容错的请求处理"""try:# 尝试使用主服务return await self.circuit_breaker.call(self.primary_service.process_request,request)except Exception as primary_error:print(f"Primary service failed: {primary_error}")# 尝试使用备用服务for fallback_service in self.fallback_services:try:result = await fallback_service.process_request(request)result['fallback_used'] = Trueresult['primary_error'] = str(primary_error)return resultexcept Exception as fallback_error:print(f"Fallback service failed: {fallback_error}")continue# 所有服务都失败了return {'status': 'error','error': 'All services unavailable','primary_error': str(primary_error)}# 自动恢复管理器
class AutoRecoveryManager:def __init__(self, service_registry: ServiceRegistry):self.service_registry = service_registryself.recovery_strategies = {}self.monitoring_tasks = {}def register_recovery_strategy(self,service_name: str,strategy: Callable):"""注册恢复策略"""self.recovery_strategies[service_name] = strategyasync def start_monitoring(self, service_name: str):"""开始监控服务"""if service_name in self.monitoring_tasks:returntask = asyncio.create_task(self._monitor_service(service_name))self.monitoring_tasks[service_name] = taskasync def stop_monitoring(self, service_name: str):"""停止监控服务"""if service_name in self.monitoring_tasks:self.monitoring_tasks[service_name].cancel()del self.monitoring_tasks[service_name]async def _monitor_service(self, service_name: str):"""监控单个服务"""consecutive_failures = 0while True:try:instances = self.service_registry.discover_services(service_name)healthy_instances = [i for i in instances if i.is_healthy]if len(healthy_instances) == 0 and len(instances) > 0:consecutive_failures += 1if consecutive_failures >= 3:await self._trigger_recovery(service_name)consecutive_failures = 0else:consecutive_failures = 0await asyncio.sleep(30)  # 每30秒检查一次except asyncio.CancelledError:breakexcept Exception as e:print(f"Monitoring error for {service_name}: {e}")await asyncio.sleep(10)async def _trigger_recovery(self, service_name: str):"""触发服务恢复"""print(f"Triggering recovery for service: {service_name}")if service_name in self.recovery_strategies:try:await self.recovery_strategies[service_name]()except Exception as e:print(f"Recovery failed for {service_name}: {e}")else:# 默认恢复策略:重启服务await self._default_recovery(service_name)async def _default_recovery(self, service_name: str):"""默认恢复策略"""# 简化的重启逻辑print(f"Attempting to restart {service_name}")# 这里应该实现真实的服务重启逻辑# 例如:调用容器编排系统的APIawait asyncio.sleep(5)  # 模拟重启时间print(f"Service {service_name} recovery attempted")

监控与运维

1. 分布式监控系统

import time
from dataclasses import dataclass
from typing import Dict, List, Any
import asyncio@dataclass
class Metric:name: strvalue: floattimestamp: floattags: Dict[str, str]unit: str = Noneclass MetricsCollector:def __init__(self):self.metrics = []self.counters = {}self.gauges = {}self.histograms = {}def counter(self, name: str, value: float = 1, tags: Dict[str, str] = None):"""记录计数器指标"""key = f"{name}:{tags or {}}"self.counters[key] = self.counters.get(key, 0) + valueself.metrics.append(Metric(name=name,value=self.counters[key],timestamp=time.time(),tags=tags or {},unit="count"))def gauge(self, name: str, value: float, tags: Dict[str, str] = None):"""记录瞬时值指标"""key = f"{name}:{tags or {}}"self.gauges[key] = valueself.metrics.append(Metric(name=name,value=value,timestamp=time.time(),tags=tags or {},unit="gauge"))def histogram(self,name: str,value: float,tags: Dict[str, str] = None):"""记录直方图指标"""key = f"{name}:{tags or {}}"if key not in self.histograms:self.histograms[key] = {'count': 0,'sum': 0,'min': float('inf'),'max': float('-inf'),'values': []}hist = self.histograms[key]hist['count'] += 1hist['sum'] += valuehist['min'] = min(hist['min'], value)hist['max'] = max(hist['max'], value)hist['values'].append(value)# 保持最近1000个值if len(hist['values']) > 1000:hist['values'] = hist['values'][-1000:]self.metrics.append(Metric(name=name,value=value,timestamp=time.time(),tags=tags or {},unit="histogram"))def get_metrics(self, since: float = None) -> List[Metric]:"""获取指标"""if since is None:return self.metrics.copy()return [m for m in self.metrics if m.timestamp >= since]def clear_metrics(self):"""清除指标"""self.metrics.clear()# 系统监控器
class SystemMonitor:def __init__(self, metrics_collector: MetricsCollector):self.metrics = metrics_collectorself.monitoring_task = Noneself.is_running = Falseasync def start(self):"""开始监控"""self.is_running = Trueself.monitoring_task = asyncio.create_task(self._monitoring_loop())async def stop(self):"""停止监控"""self.is_running = Falseif self.monitoring_task:self.monitoring_task.cancel()async def _monitoring_loop(self):"""监控循环"""while self.is_running:try:await self._collect_system_metrics()await asyncio.sleep(10)  # 每10秒收集一次except asyncio.CancelledError:breakexcept Exception as e:print(f"Monitoring error: {e}")await asyncio.sleep(5)async def _collect_system_metrics(self):"""收集系统指标"""import psutil# CPU使用率cpu_percent = psutil.cpu_percent(interval=1)self.metrics.gauge('system.cpu.usage', cpu_percent, {'unit': 'percent'})# 内存使用率memory = psutil.virtual_memory()self.metrics.gauge('system.memory.usage', memory.percent, {'unit': 'percent'})self.metrics.gauge('system.memory.available', memory.available, {'unit': 'bytes'})# 磁盘使用率disk = psutil.disk_usage('/')disk_percent = (disk.used / disk.total) * 100self.metrics.gauge('system.disk.usage', disk_percent, {'unit': 'percent'})# 网络IOnetwork = psutil.net_io_counters()self.metrics.counter('system.network.bytes_sent', network.bytes_sent)self.metrics.counter('system.network.bytes_recv', network.bytes_recv)# 分布式追踪
class DistributedTracer:def __init__(self):self.active_traces = {}self.completed_traces = []def start_span(self,operation_name: str,parent_span_id: str = None,tags: Dict[str, Any] = None) -> 'Span':"""开始一个新的span"""span = Span(operation_name=operation_name,parent_span_id=parent_span_id,tags=tags or {})self.active_traces[span.span_id] = spanreturn spandef finish_span(self, span: 'Span'):"""完成span"""span.finish()if span.span_id in self.active_traces:del self.active_traces[span.span_id]self.completed_traces.append(span)# 保持最近1000个追踪if len(self.completed_traces) > 1000:self.completed_traces = self.completed_traces[-1000:]def get_trace(self, trace_id: str) -> List['Span']:"""获取完整的追踪"""return [span for span in self.completed_tracesif span.trace_id == trace_id]@dataclass
class Span:operation_name: strparent_span_id: str = Nonetags: Dict[str, Any] = Nonespan_id: str = Nonetrace_id: str = Nonestart_time: float = Noneend_time: float = Noneduration: float = Nonedef __post_init__(self):import uuidself.span_id = str(uuid.uuid4())self.trace_id = self.parent_span_id or str(uuid.uuid4())self.start_time = time.time()self.tags = self.tags or {}def finish(self):"""完成span"""self.end_time = time.time()self.duration = self.end_time - self.start_timedef add_tag(self, key: str, value: Any):"""添加标签"""self.tags[key] = valuedef log(self, message: str):"""添加日志"""if 'logs' not in self.tags:self.tags['logs'] = []self.tags['logs'].append({'timestamp': time.time(),'message': message})

部署自动化

1. 容器化部署

# Dockerfile示例配置
DOCKERFILE_TEMPLATE = """
FROM python:3.9-slimWORKDIR /app# 安装依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt# 复制应用代码
COPY . .# 健康检查
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \\CMD curl -f http://localhost:8080/health || exit 1# 启动命令
CMD ["python", "app.py"]
"""# Docker Compose配置
DOCKER_COMPOSE_TEMPLATE = """
version: '3.8'services:api-gateway:build: ./gatewayports:- "8080:8080"environment:- SERVICE_NAME=api-gateway- REGISTRY_URL=http://service-registry:8500depends_on:- service-registry- redishealthcheck:test: ["CMD", "curl", "-f", "http://localhost:8080/health"]interval: 30stimeout: 10sretries: 3claude-service:build: ./claude-servicedeploy:replicas: 3environment:- SERVICE_NAME=claude-service- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY}- REGISTRY_URL=http://service-registry:8500depends_on:- service-registry- redisauth-service:build: ./auth-servicedeploy:replicas: 2environment:- SERVICE_NAME=auth-service- REGISTRY_URL=http://service-registry:8500depends_on:- service-registry- postgresredis:image: redis:6-alpineports:- "6379:6379"volumes:- redis_data:/datapostgres:image: postgres:13environment:- POSTGRES_DB=claude_app- POSTGRES_USER=app_user- POSTGRES_PASSWORD=app_passwordvolumes:- postgres_data:/var/lib/postgresql/dataservice-registry:image: consul:latestports:- "8500:8500"command: consul agent -dev -client=0.0.0.0volumes:redis_data:postgres_data:
"""# Kubernetes部署配置
K8S_DEPLOYMENT_TEMPLATE = """
apiVersion: apps/v1
kind: Deployment
metadata:name: claude-servicelabels:app: claude-service
spec:replicas: 3selector:matchLabels:app: claude-servicetemplate:metadata:labels:app: claude-servicespec:containers:- name: claude-serviceimage: claude-app/claude-service:latestports:- containerPort: 8080env:- name: ANTHROPIC_API_KEYvalueFrom:secretKeyRef:name: claude-secretskey: api-key- name: REDIS_URLvalue: "redis://redis-service:6379"resources:requests:memory: "256Mi"cpu: "250m"limits:memory: "512Mi"cpu: "500m"livenessProbe:httpGet:path: /healthport: 8080initialDelaySeconds: 30periodSeconds: 10readinessProbe:httpGet:path: /readyport: 8080initialDelaySeconds: 5periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:name: claude-service
spec:selector:app: claude-serviceports:- protocol: TCPport: 80targetPort: 8080type: ClusterIP
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:name: claude-service-hpa
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: claude-serviceminReplicas: 2maxReplicas: 10metrics:- type: Resourceresource:name: cputarget:type: UtilizationaverageUtilization: 70- type: Resourceresource:name: memorytarget:type: UtilizationaverageUtilization: 80
"""class DeploymentManager:def __init__(self):self.environments = {'development': {'replicas': 1,'resources': {'memory': '256Mi', 'cpu': '100m'}},'staging': {'replicas': 2,'resources': {'memory': '512Mi', 'cpu': '250m'}},'production': {'replicas': 3,'resources': {'memory': '1Gi', 'cpu': '500m'}}}def generate_k8s_manifests(self,service_name: str,environment: str,image_tag: str) -> Dict[str, str]:"""生成Kubernetes部署清单"""env_config = self.environments.get(environment, self.environments['production'])manifests = {'deployment': self._generate_deployment_manifest(service_name, environment, image_tag, env_config),'service': self._generate_service_manifest(service_name),'hpa': self._generate_hpa_manifest(service_name, env_config)}return manifestsdef _generate_deployment_manifest(self,service_name: str,environment: str,image_tag: str,config: Dict) -> str:"""生成Deployment清单"""return f"""
apiVersion: apps/v1
kind: Deployment
metadata:name: {service_name}namespace: {environment}labels:app: {service_name}environment: {environment}
spec:replicas: {config['replicas']}selector:matchLabels:app: {service_name}template:metadata:labels:app: {service_name}environment: {environment}spec:containers:- name: {service_name}image: claude-app/{service_name}:{image_tag}ports:- containerPort: 8080resources:requests:memory: {config['resources']['memory']}cpu: {config['resources']['cpu']}limits:memory: {config['resources']['memory']}cpu: {config['resources']['cpu']}livenessProbe:httpGet:path: /healthport: 8080initialDelaySeconds: 30periodSeconds: 10readinessProbe:httpGet:path: /readyport: 8080initialDelaySeconds: 5periodSeconds: 5
"""def _generate_service_manifest(self, service_name: str) -> str:"""生成Service清单"""return f"""
apiVersion: v1
kind: Service
metadata:name: {service_name}
spec:selector:app: {service_name}ports:- protocol: TCPport: 80targetPort: 8080type: ClusterIP
"""def _generate_hpa_manifest(self, service_name: str, config: Dict) -> str:"""生成HPA清单"""max_replicas = config['replicas'] * 3return f"""
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:name: {service_name}-hpa
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: {service_name}minReplicas: {config['replicas']}maxReplicas: {max_replicas}metrics:- type: Resourceresource:name: cputarget:type: UtilizationaverageUtilization: 70
"""

这个分布式部署架构提供了完整的微服务部署方案,包括服务发现、负载均衡、容错机制、监控系统和自动化部署等关键组件。

http://www.lryc.cn/news/588601.html

相关文章:

  • 淘宝扭蛋机小程序开发:重构电商娱乐化体验的新范式
  • GaussDB 数据库架构师修炼(四) 备份容量估算
  • 【轨物洞见】光伏运维的“无人区”突围战,数据智能是唯一航标
  • Python Docker SDK库详解:从入门到实战
  • docker 方式gost代理搭建以及代理链实施
  • Linux VFS 抽象层全解析:统一接口的力量
  • JAVA学习笔记 使用notepad++开发JAVA-003
  • 微信小程序进度条cavans
  • 虚拟主机CPU占用100导致打不开的一次处理
  • [数据结构]#3 循环链表/双向链表
  • 微信小程序未登录状态下的导航拦截有哪些方法可以实现
  • 暑假Python基础整理 --异常处理及程序调试
  • python原生处理properties文件
  • 电动汽车制动系统及其工作原理
  • slam中的eskf观测矩阵推导
  • LangChain智能体开发实战:从零构建企业级AI助手
  • C++ Boost Aiso TCP 网络聊天(服务端客户端一体化)
  • CMake基础:覆盖项目开发的五大配套工具
  • 【机器学习深度学习】大模型推理速度与私有化部署的价值分析
  • ELK部署与使用详解
  • Docker部署语音转文字(STT)服务并接入Home Assistant
  • Dubbo高阶难题:异步转同步调用链上全局透传参数的丢失问题
  • 设备发出、接收数据帧的工作机制
  • HarmonyOS从入门到精通:动画设计与实现之九 - 实用动画案例详解(上)
  • HarmonyOS从入门到精通:动画设计与实现之九 - 实用动画案例详解(下)
  • 暑假Python基础整理 -- 文件及目录操作
  • keepalive模拟操作部署
  • 2025-7-14-C++ 学习 排序(2)
  • IoC容器深度解析:架构、原理与实现
  • 驱动开发系列60- Vulkan 驱动实现-SPIRV到HW指令的实现过程(1)