当前位置: 首页 > news >正文

代码随想录算法训练营第四十九天 | 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

打卡第49天,买卖股票系列了

今日任务

● 121. 买卖股票的最佳时机
● 122.买卖股票的最佳时机II

121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 104

我的题解

贪心做法,一边最小的买入,一边最大的收益,卖出一定在买入后面

class Solution {
public:int maxProfit(vector<int>& prices) {int low = INT_MAX;int res = 0;for(int i = 0; i < prices.size(); i++) {low = min(low, prices[i]);res = max(res, prices[i] - low);}return res;}
};

代码随想录

动态规划思路:

  1. dp以及下标的定义
    dp[i][0]表示第i天持有股票所得最大现金
    dp[i][1]表示第i天不持有股票所得最大现金
  2. 递推公式
    dp[i][0]=max(dp[i−1][0],−prices[i]);//持有股票可能是i−1天前持有,也有可能是当天买入dp[i][0] = max(dp[i - 1][0], -prices[i]); //持有股票可能是i-1天前持有,也有可能是当天买入dp[i][0]=max(dp[i1][0],prices[i]);//持有股票可能是i1天前持有,也有可能是当天买入
    dp[i][1]=max(dp[i−1][1],dp[i][0]+prices[i]);//不持有股票可能是i−1天前就不持有,也有可能是当天卖出dp[i][1] = max(dp[i - 1][1], dp[i][0] + prices[i]);//不持有股票可能是i-1天前就不持有,也有可能是当天卖出dp[i][1]=max(dp[i1][1],dp[i][0]+prices[i]);//不持有股票可能是i1天前就不持有,也有可能是当天卖出
  3. 初始化
    dp[0][0] 第一天持有股票,那就是第一天买入 -prices[0];
    dp[0][1] 第一天不持有股票,初始化为0
  4. 遍历顺序
    从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
class Solution {
public:int maxProfit(vector<int>& prices) {int size = prices.size();vector<vector<int>> dp(size, vector<int>(2, 0)); //dp[i][0] 当天持有股票所得最大现金,当天不持有股票的所得最大现金dp[0][0] -= prices[0]; dp[0][1] = 0;for(int i = 1; i < size; i++) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i][0] + prices[i]);}return dp[size - 1][1];}
};

122.买卖股票的最佳时机II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

提示:

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104

我的题解

无限次买进卖出

class Solution {
public:int maxProfit(vector<int>& prices) {int res = 0;for(int i = 1; i < prices.size(); i++) {res += max(prices[i] - prices[i - 1], 0);}return res;}
};

代码随想录

因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2,0));dp[0][0] -= prices[0]; dp[0][1] = 0;for(int i = 1; i < n; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[n - 1][1];}
};
http://www.lryc.cn/news/58383.html

相关文章:

  • 【职场篇】程序员是否吃青春饭?程序员在35岁之后是否需要转行?
  • ( “树” 之 DFS) 226. 翻转二叉树 ——【Leetcode每日一题】
  • 实验7---myBatis和Spring整合
  • DJ3-4 传输层(第四节课)
  • 2023爱分析·商业智能应用解决方案市场厂商评估报告:数聚股份
  • Kotlin方法执行顺序
  • Ubuntu系统配置SonarQube + cppcheck + Jenkins
  • Spring @Valid 不生效 问题记录
  • 五步教你如何注册一个公司网站
  • CSS绘制气泡对话框样式(有边框)
  • 12款 Macmini A1347 跑 Stable Diffusion,20多分钟一张图
  • 流量控制和拥塞控制的原理和区别
  • 金融机构断卡行动中外部数据
  • 携程总监的单元测试是怎么样写的?
  • 算法每日一题:P2089 烤鸡 -DFS练习
  • Spring中的循环依赖是什么?如何解决它?
  • 不良事件报告系统源码,PHP医院安全(不良)事件报告系统源码,在大型医院稳定运行多年
  • MySQL 查询常用操作(3)——排序 order by
  • Android Jetpack 从使用到源码深耕【数据库注解Room 从实践到原理 】(二)
  • 传统企业如何实现数字化转型?
  • Linux修改密码报错Authentication token manipulation error的终极解决方法
  • ROS实践06 自定义消息类型
  • 《剑指offer》——从尾到头打印链表
  • Javaweb基础配置模板(mybatis+javaweb)
  • 物联网 JS 前端框架开发 - 执行 js 程序
  • 区块链概论
  • MAC地址表安全
  • 处理CSV(python)
  • 【云原生】Kubernetes(k8s)之容器的探测
  • 看完这个你就牛了,自动化测试框架设计