当前位置: 首页 > news >正文

射频信号(大宽高比)时频图目标检测anchors配置

这是yolov7的一个label的txt文件:

1 0.500 0.201 1.000 0.091
2 0.500 0.402 1.000 0.150
3 0.500 0.604 1.000 0.093
0 0.500 0.804 1.000 0.217

对应的样本:

长宽比分别是:1/0.091=10.98,  1/0.150=6.67,  1/0.093=10.75,  1/0.217=4.61

计算anchor的程序:

import utils.autoanchor as autoAC# 对数据集重新计算 anchors
new_anchors = autoAC.kmean_anchors('D:\实验室\论文\论文-多信号参数估计\实验\YOLOv7\yolov7-main\zzc-multisignals-dataset-yolov7.yaml', 4, 416, 11, 1000, True)
print(new_anchors)

其中,4代表聚类出9种锚框,416代表默认的图片大小,10表示数据集中标注框宽高比的最大阈值,1000代表kmean聚类算法迭代计算1000次。

一开始报错了:

C:\Users\14115\.conda\envs\yolov7\python.exe "D:\实验室\论文\论文-多信号参数估计\实验\YOLOv7\yolov7-main\calculate anchors.py" 
Scanning 'D:\english\yolov7\datasets_higher_cut\train.cache' images and labels... 400 found, 0 missing, 0 empty, 0 corrupted: 100%|██████████| 400/400 [00:00<?, ?it/s]
D:\实验室\论文\论文-多信号参数估计\实验\YOLOv7\yolov7-main\utils\autoanchor.py:125: RuntimeWarning: divide by zero encountered in dividek, dist = kmeans(wh / s, n, iter=30)  # points, mean distance
Traceback (most recent call last):File "D:\实验室\论文\论文-多信号参数估计\实验\YOLOv7\yolov7-main\calculate anchors.py", line 4, in <module>new_anchors = autoAC.kmean_anchors('D:\实验室\论文\论文-多信号参数估计\实验\YOLOv7\yolov7-main\zzc-multisignals-dataset-yolov7.yaml', 4, 416, 11, 1000, True)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\实验室\论文\论文-多信号参数估计\实验\YOLOv7\yolov7-main\utils\autoanchor.py", line 125, in kmean_anchorsk, dist = kmeans(wh / s, n, iter=30)  # points, mean distance^^^^^^^^^^^^^^^^^^^^^^^^^^File "C:\Users\14115\.conda\envs\yolov7\Lib\site-packages\scipy\_lib\_util.py", line 440, in wrapperreturn fun(*args, **kwargs)^^^^^^^^^^^^^^^^^^^^File "C:\Users\14115\.conda\envs\yolov7\Lib\site-packages\scipy\cluster\vq.py", line 467, in kmeansobs = _asarray(obs, xp=xp, check_finite=check_finite)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "C:\Users\14115\.conda\envs\yolov7\Lib\site-packages\scipy\_lib\_array_api.py", line 193, in _asarray_check_finite(array, xp)File "C:\Users\14115\.conda\envs\yolov7\Lib\site-packages\scipy\_lib\_array_api.py", line 109, in _check_finiteraise ValueError(msg)
ValueError: array must not contain infs or NaNs
autoanchor: Running kmeans for 4 anchors on 1600 points...进程已结束,退出代码为 1

发现问题出在yolov7-main/utils/autoanchor.py里kmean_anchors中用标准差归一化上:

s = wh.std(0)  # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) 
wh
array([[      322.4,      23.079],[      322.4,      38.049],[      322.4,      23.703],...,[      322.4,      26.198],[      322.4,      34.931],[      322.4,      25.574]])
wh.shape
(1600, 2)
s
array([          0,      8.5888])

可以看到,因为其中一个维度标准差为0,导致按正常归一化方法就会报错。那就检测0元素,赋一个较小值:

s[s == 0] = 1e-8

运行结果:

说明我的多信号时频图数据适合用这几个anchor:

[[      322.6      26.134]
[     323.99      32.985]
[        322      40.793]
[     322.72      47.953]]


或者......如果数据集样本宽高比差不多的话,自己估摸着样本的宽高比设计anchor,在默认anchors的基础上按比例调整

默认anchor:

# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32

我的样本宽高比达大概在4:1至11:1 ,所以我自己估摸着修改anchor数值:

# anchors
anchors:- [20,10, 20,8, 20,4]  # P3/8 640->80  416->52- [80,40, 80,16, 80,8]  # P4/16 640->40 416->26- [300,100, 300,60, 300,30]  # P5/32 640->20 416->13

这么设置出问题了..... 

设置只在竖直方向进行非极大值抑制。首先定位非极大值抑制函数:

不过这样找到的函数未必一定运行到这,通过断点找非极大值抑制函数更准:

 找到了非极大值抑制函数:

def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,labels=()):"""Runs Non-Maximum Suppression (NMS) on inference resultsReturns:list of detections, on (n,6) tensor per image [xyxy, conf, cls]"""nc = prediction.shape[2] - 5  # number of classesxc = prediction[..., 4] > conf_thres  # candidates# Settingsmin_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and heightmax_det = 300  # maximum number of detections per imagemax_nms = 30000  # maximum number of boxes into torchvision.ops.nms()time_limit = 10.0  # seconds to quit afterredundant = True  # require redundant detectionsmulti_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)merge = False  # use merge-NMSt = time.time()output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]for xi, x in enumerate(prediction):  # image index, image inference# Apply constraints# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-heightx = x[xc[xi]]  # confidence# Cat apriori labels if autolabellingif labels and len(labels[xi]):l = labels[xi]v = torch.zeros((len(l), nc + 5), device=x.device)v[:, :4] = l[:, 1:5]  # boxv[:, 4] = 1.0  # confv[range(len(l)), l[:, 0].long() + 5] = 1.0  # clsx = torch.cat((x, v), 0)# If none remain process next imageif not x.shape[0]:continue# Compute confif nc == 1:x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,# so there is no need to multiplicate.else:x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf# Box (center x, center y, width, height) to (x1, y1, x2, y2)#这里LFM,SFM的概率就远高于BPSK,Frank了box = xywh2xyxy(x[:, :4])# Detections matrix nx6 (xyxy, conf, cls)if multi_label:i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).Tx = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)else:  # best class onlyconf, j = x[:, 5:].max(1, keepdim=True)x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]# Filter by classif classes is not None:x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]# Apply finite constraint# if not torch.isfinite(x).all():#     x = x[torch.isfinite(x).all(1)]# Check shape#这里只剩下LFM,SFM类了n = x.shape[0]  # number of boxesif not n:  # no boxescontinueelif n > max_nms:  # excess boxesx = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence# Batched NMSc = x[:, 5:6] * (0 if agnostic else max_wh)  # classesboxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scoresi = torchvision.ops.nms(boxes, scores, iou_thres)  # NMSif i.shape[0] > max_det:  # limit detectionsi = i[:max_det]if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrixweights = iou * scores[None]  # box weightsx[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxesif redundant:i = i[iou.sum(1) > 1]  # require redundancyoutput[xi] = x[i]if (time.time() - t) > time_limit:print(f'WARNING: NMS time limit {time_limit}s exceeded')break  # time limit exceededreturn output

 有一段很关键的话:

i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS

如果我们只在竖直方向进行非极大值抑制的话,把boxes中x1,x2分别设置为图片最左边和最右边就好了,这样计算的IOU是不考虑水平方向的。

注意,下面限制NMS的句子加的位置不对:

 # Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scoresboxes[:,0]=0
boxes[:, 2] = 450i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS box的数值和x是不一致的

必须加在+c前

+c是使得NMS可以考虑不同类别

正常的boxes:

+c以后再限制NMS的boxes:

http://www.lryc.cn/news/583658.html

相关文章:

  • 基于DeepSeek构建的openGauss AI智能优化助手:数据库性能提升新利器
  • vscode 防止linux索引爆红
  • AI智能体记忆架构的革命:LangGraph中的分层记忆系统实现
  • vue3面试题(个人笔记)
  • Flutter基础(前端教程⑧-数据模型)
  • vue快速上手
  • 设计模式(行为型)-责任链模式
  • ARM单片机OTA解析(一)
  • whitt算法之特征向量的尺度
  • 数据结构之位图和布隆过滤器
  • 详解CAN总线的位填充机制
  • 数据结构——深度优先搜索与广度优先搜索的实现
  • [附源码+数据库+毕业论]基于Spring Boot+mysql+vue结合内容推荐算法的学生咨询系统
  • RabbitMQ 4.1.1-Local random exchange体验
  • C++如何进行性能优化?
  • 19-C#静态方法与静态类
  • 【WEB】Polar靶场 21-25题 详细笔记
  • 从0开始学习R语言--Day42--LM检验
  • 异地组网
  • 数据分析框架和方法
  • Mac电脑,休眠以后,发现电量一直在减少,而且一个晚上,基本上是没了,开机都需要插电源的简单处理
  • 卫星通信终端天线的5种对星模式之二:功率检测型载波跟踪
  • 【PyTorch】PyTorch中数据准备工作(AI生成)
  • 深度学习——损失函数
  • Hexo + Butterfly + Vercel 完整个人Blog部署指南
  • Flask3.1打造极简CMS系统
  • 自动化Trae Apollo参数解释的批量获取
  • 股权结构解析
  • SpringBoot集成文件 - 大文件的上传(异步,分片,断点续传和秒传)
  • 专题一_双指针_查找总价格为目标值的两个商品