当前位置: 首页 > news >正文

YOLOv11改进系列---Conv篇---2024最新深度可分卷积与多尺度卷积结合的模块MSCB助力yolov11有效涨点

一、本文介绍

本文给大家带来的最新改进机制是2024最新深度可分卷积与多尺度卷积的结合的模块MSCB,其核心机制是 Multi-scale Depth-wise Convolution (MSDC) 是一种改进的 卷积神经网络 (CNN)结构,旨在提升卷积操作的多尺度特征提取能力。它的核心思想是通过在多个尺度下进行卷积操作,以捕获不同层级的图像特征,同时保持 深度可分卷积(Depth-wise Convolution) 的计算效率,我将其和C3k2进行结合(多种结合方式),分别为辅助yolov11进行特征提取能力和特征融合能力,本文内容为独家创新,文章内涵代码和添加方法。

训练信息:YOLO11-C3k2-MSCB1 summary: 395 layers, 2,555,235 parameters, 2,555,219 gradients, 6.3 GFLOPs
训练信息:YOLO11-C3k2-MSCB2 summary: 410 layers, 2,358,867 parameters, 2,358,851 gradients, 6.2 GFLOPs
未优化版本:YOLO11 summary: 319 layers, 2,590,035 parameters, 2,590,019 gradients, 6.4 GFLOPs

系列专栏 :

YOLOv11改进(更换卷积、添加注意力、更换主干网络、图像去噪、去雾、增强等)涨点系列------发论文必备​​​​https://blog.csdn.net/m0_58941767/category_12987736.html?spm=1001.2014.3001.5482https://blog.csdn.net/m0_58941767/category_12987736.html?spm=1001.2014.3001.5482


目录

一、本文介绍

二、原理介绍 

1. 深度可分卷积(Depth-wise Convolution)

2. 多尺度卷积核的引入

3. 深度可分卷积与多尺度卷积的结合

三、核心代码 

四、使用方式

4.1 修改一

4.2 修改二

4.3 修改三

4.4 修改四

五、正式训练 

5.1 yaml文件1

5.2 yaml文件2

5.3 训练代码

5.4 训练过程截图

五、本文总结


二、原理介绍 

论文地址: 官方论文地址

代码地址: 官方代码地址

Multi-scale Depth-wise Convolution (MSDC) 是一种改进的卷积神经网络( CNN )结构,旨在提升卷积操作的多尺度特征提取能力。它的核心思想是通过在多个尺度下进行卷积操作,以捕获不同层级的图像特征,同时保持 深度可分卷积(Depth-wise Convolution) 的计算效率。

下面我们了解一下MSDC的 基本原理:

1. 深度可分卷积(Depth-wise Convolution)

在传统卷积中,卷积核会对输入的每个通道进行操作,然后得到一个新的特征图,而这种操作往往涉及大量的计算,尤其是在输入数据和卷积核的通道数较多时,计算量会急剧增加。

深度可分卷(Depth-wise Convolution)将传统卷积操作分解成 两个阶段:
(1)逐通道卷积: 对于输入的每个通道,使用一个卷积核单独进行卷积操作。每个卷积核只处理一个通道,通常使用较小的卷积核(例如3x3)。
(2)逐点卷积: 在每个通道的输出特征图上使用一个1x1卷积核进行线性组合(即通过逐点卷积将每个通道的输出进行融合)。

2. 多尺度卷积核的引入

传统的卷积神经网络通常使用固定大小的卷积核(如3x3、5x5等)来提取特征。然而,单一尺寸的卷积核往往只能捕捉到固定尺度的特征,无法全面地捕捉图像中不同大小、不同尺度的物体特征。为了解决这个问题, 多尺度卷积核(Multi-scale Kernels) 被引入到 MSDC 中。

在 MSDC 中,通过引入多种尺度(尺寸不同)的卷积核来提取图像的 多尺度特征 。常见的做法是使用不同尺寸的卷积核并行处理输入特征图,比如:使用 3 \times 3 的卷积核捕捉局部的细节信息。使用 5 \times 5 或 7 \times 7 的卷积核捕捉较大的上下文信息。这些不同尺度的卷积核能够捕捉到图像中的多种尺度特征(例如:小物体、大物体等),尤其是在图像中物体尺度变化较大的情况下,多尺度卷积能够帮助网络提高对不同尺度特征的感知能力。

3. 深度可分卷积与多尺度卷积的结合

将深度可分卷积与多尺度卷积结合,MSDC 在保持计算效率的同时,能够有效地捕捉图像中不同尺度的特征。具体而言,MSDC 使用多尺度卷积核(例如 3 \times 3 , 5 \times 5 , 7 \times 7 等)分别对输入的特征图进行卷积操作,并通过深度可分卷积的方式对每个尺度的卷积核进行操作,最后将这些不同尺度的特征进行融合(例如通过拼接或加和的方式)。

这种设计方式的具体流程如下:
1. 逐通道卷积: 每个卷积核(不同尺度)只作用于输入的每一个通道,分别对不同尺度的特征进行处理。
2. 多尺度特征提取: 多个不同尺度的卷积核会在同一层次上并行工作,每个卷积核从不同的感受野范围内提取特征。
3. 特征融合: 通过连接(concatenation)或加和(summation)等方式,将来自不同尺度卷积核的输出特征进行融合,得到包含多尺度信息的特征图。


三、核心代码 

import torch
import torch.nn as nn
from functools import partial
import math
from timm.models.layers import trunc_normal_tf_
from timm.models.helpers import named_apply__all__ = ['C3k2_MSCB1', 'C3k2_MSCB2']def gcd(a, b):while b:a, b = b, a % breturn a# Other types of layers can go here (e.g., nn.Linear, etc.)
def _init_weights(module, name, scheme=''):if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d):if scheme == 'normal':nn.init.normal_(module.weight, std=.02)if module.bias is not None:nn.init.zeros_(module.bias)elif scheme == 'trunc_normal':trunc_normal_tf_(module.weight, std=.02)if module.bias is not None:nn.init.zeros_(module.bias)elif scheme == 'xavier_normal':nn.init.xavier_normal_(module.weight)if module.bias is not None:nn.init.zeros_(module.bias)elif scheme == 'kaiming_normal':nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')if module.bias is not None:nn.init.zeros_(module.bias)else:# efficientnet likefan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channelsfan_out //= module.groupsnn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))if module.bias is not None:nn.init.zeros_(module.bias)elif isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d):nn.init.constant_(module.weight, 1)nn.init.constant_(module.bias, 0)elif isinstance(module, nn.LayerNorm):nn.init.constant_(module.weight, 1)nn.init.constant_(module.bias, 0)def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1):# activation layeract = act.lower()if act == 'relu':layer = nn.ReLU(inplace)elif act == 'relu6':layer = nn.ReLU6(inplace)elif act == 'leakyrelu':layer = nn.LeakyReLU(neg_slope, inplace)elif act == 'prelu':layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)elif act == 'gelu':layer = nn.GELU()elif act == 'hswish':layer = nn.Hardswish(inplace)else:raise NotImplementedError('activation layer [%s] is not found' % act)return layerdef channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups# reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()# flattenx = x.view(batchsize, -1, height, width)return x#   Multi-scale depth-wise convolution (MSDC)
class MSDC(nn.Module):def __init__(self, in_channels, kernel_sizes, stride, activation='relu6', dw_parallel=True):super(MSDC, self).__init__()self.in_channels = in_channelsself.kernel_sizes = kernel_sizesself.activation = activationself.dw_parallel = dw_parallelself.dwconvs = nn.ModuleList([nn.Sequential(nn.Conv2d(self.in_channels, self.in_channels, kernel_size, stride, kernel_size // 2,groups=self.in_channels, bias=False),nn.BatchNorm2d(self.in_channels),act_layer(self.activation, inplace=True))for kernel_size in self.kernel_sizes])self.init_weights('normal')def init_weights(self, scheme=''):named_apply(partial(_init_weights, scheme=scheme), self)def forward(self, x):# Apply the convolution layers in a loopoutputs = []for dwconv in self.dwconvs:dw_out = dwconv(x)outputs.append(dw_out)if self.dw_parallel == False:x = x + dw_out# You can return outputs based on what you intend to do with themreturn outputsclass MSCB(nn.Module):"""Multi-scale convolution block (MSCB)"""def __init__(self, in_channels, out_channels, shortcut=False, stride=1, kernel_sizes=[1, 3, 5], expansion_factor=2, dw_parallel=True, activation='relu6'):super(MSCB, self).__init__()add = shortcutself.in_channels = in_channelsself.out_channels = out_channelsself.stride = strideself.kernel_sizes = kernel_sizesself.expansion_factor = expansion_factorself.dw_parallel = dw_parallelself.add = addself.activation = activationself.n_scales = len(self.kernel_sizes)# check stride valueassert self.stride in [1, 2]# Skip connection if stride is 1self.use_skip_connection = True if self.stride == 1 else False# expansion factorself.ex_channels = int(self.in_channels * self.expansion_factor)self.pconv1 = nn.Sequential(# pointwise convolutionnn.Conv2d(self.in_channels, self.ex_channels, 1, 1, 0, bias=False),nn.BatchNorm2d(self.ex_channels),act_layer(self.activation, inplace=True))self.msdc = MSDC(self.ex_channels, self.kernel_sizes, self.stride, self.activation,dw_parallel=self.dw_parallel)if self.add == True:self.combined_channels = self.ex_channels * 1else:self.combined_channels = self.ex_channels * self.n_scalesself.pconv2 = nn.Sequential(# pointwise convolutionnn.Conv2d(self.combined_channels, self.out_channels, 1, 1, 0, bias=False),nn.BatchNorm2d(self.out_channels),)if self.use_skip_connection and (self.in_channels != self.out_channels):self.conv1x1 = nn.Conv2d(self.in_channels, self.out_channels, 1, 1, 0, bias=False)self.init_weights('normal')def init_weights(self, scheme=''):named_apply(partial(_init_weights, scheme=scheme), self)def forward(self, x):pout1 = self.pconv1(x)msdc_outs = self.msdc(pout1)if self.add == True:dout = 0for dwout in msdc_outs:dout = dout + dwoutelse:dout = torch.cat(msdc_outs, dim=1)dout = channel_shuffle(dout, gcd(self.combined_channels, self.out_channels))out = self.pconv2(dout)if self.use_skip_connection:if self.in_channels != self.out_channels:x = self.conv1x1(x)return x + outelse:return outdef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):"""Applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C2f(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))class C3(nn.Module):"""CSP Bottleneck with 3 convolutions."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))def forward(self, x):"""Forward pass through the CSP bottleneck with 2 convolutions."""return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))class C3k(C3):"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):"""Initializes the C3k module with specified channels, number of layers, and configurations."""super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)  # hidden channels# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))class C3k_MSCB(C3):"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):"""Initializes the C3k module with specified channels, number of layers, and configurations."""super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)  # hidden channels# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))self.m = nn.Sequential(*(MSCB(c_, c_, shortcut) for _ in range(n)))class C3k2_MSCB1(C2f):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(C3k(self.c, self.c, 2, shortcut, g) if c3k else MSCB(self.c, self.c, shortcut) for _ in range(n))# 解析 c3k在主干和网络最后一个C3k2的时候设置True走的是C3k, 否则我们走的是MSBlockclass C3k2_MSCB2(C2f):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(C3k_MSCB(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n))if __name__ == "__main__":# Generating Sample imageimage_size = (1, 64, 240, 240)image = torch.rand(*image_size)image_size1 = (1, 64, 480, 480)image1 = torch.rand(*image_size1)# Modelmobilenet_v1 = MSCB(64, 64,)out = mobilenet_v1(image)print(out.size())

四、使用方式

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹 ,然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py',然后在其内部导入我们的检测头如下图所示。


4.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块 


4.4 修改四

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。 


五、正式训练 

5.1 yaml文件1

训练信息:YOLO11-C3k2-MSCB1 summary: 395 layers, 2,555,235 parameters, 2,555,219 gradients, 6.3 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2_MSCB1, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2_MSCB1, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2_MSCB1, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2_MSCB1, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_MSCB1, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2_MSCB1, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2_MSCB1, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2_MSCB1, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.2 yaml文件2

训练信息:YOLO11-C3k2-MSCB2 summary: 410 layers, 2,358,867 parameters, 2,358,851 gradients, 6.2 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2_MSCB2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2_MSCB2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2_MSCB2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2_MSCB2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_MSCB2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2_MSCB2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2_MSCB2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2_MSCB2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.3 训练代码

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。


import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('模型配置文件')# 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,# 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!# model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",# 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, posecache=False,imgsz=640,epochs=150,single_cls=False,  # 是否是单类别检测batch=16,close_mosaic=0,workers=0,device='0',optimizer='SGD', # using SGD# resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址amp=True,  # 如果出现训练损失为Nan可以关闭ampproject='runs/train',name='exp',)

5.4 训练过程截图


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

http://www.lryc.cn/news/571949.html

相关文章:

  • macos电脑本地搭建mistral-7b大模型出现4-bit量化和缓存不足问题的记录
  • 蓝牙版本演进史:从 1.0 到 5.4 的技术突破 —— 面试高频考点与历年真题详解
  • C#List的join查询
  • Uniapp 中 onShow 与 onLoad 的执行时机解析
  • 【JAVA】的SPI机制
  • new()和new[]有什么区别?
  • tomcat 配置规范
  • springboot入门之路(一)
  • 【软考高级架构设计师】——2024年下半年软考真题(回忆版)
  • 【JUC】显示锁
  • 循环神经网络(RNN):序列数据处理的强大工具
  • 【面试题001】生产环境中如何排查MySQL CPU占用率高达100%?
  • NAT 与代理服务器 -- NAT,NAPT,正向代理,反向代理
  • 前端面试专栏-主流框架:10. React状态管理方案(Redux、Mobx、Zustand)
  • 【C语言极简自学笔记】重讲运算符
  • LVS+Keepliaved高可用群集
  • 【MySQL数据库 | 第五篇】DDL操作2
  • RabbitMQ概念
  • 深入解析线程池与队列系统设计原理
  • 【网工】华为配置专题进阶篇②
  • Oracle 创建定时任务
  • Web服务器/tmp隔离的安全性与绕过分析
  • VSCode 插件 Remote - SSH:开启高效远程开发之旅
  • SpringBoot电脑商城项目--新增收获地址
  • 系统的性能优化
  • kettle好用吗?相较于国产ETL工具有哪些优劣之处?
  • git的使用——初步认识git和基础操作
  • 【Datawhale组队学习202506】零基础学爬虫 01 初始爬虫
  • Goursat问题解的公式推导
  • TikTok 矩阵如何快速涨粉