当前位置: 首页 > news >正文

Ubuntu 22.04离线安装Docker和NVIDIA Container Toolkit(使用gpu)

参考链接:https://zhuanlan.zhihu.com/p/15194336245

注意:/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link这里不是报错的意思,只是警告,这里其实已经安装成功了,用nvidia-ctk --version命令检查若输出版本号就成功安装了。

二、离线安装NVIDIA Container Toolkit

1. 在NVIDIA的GitHub主页找到Ubuntu系统对应的NVIDIA Container Toolkit安装包

该页面的安装包较多,搜索关键词“1.14.1”,下载所有含有“1.14.1”的安装包,安装包的说明如下:

libnvidia-container1_1.14.1-1_amd64.deb           # 基础库包,提供了最基本的功能,其他包都依赖于它
libnvidia-container-tools_1.14.1-1_amd64.deb      # 基础工具包,依赖于 libnvidia-container1
nvidia-container-toolkit-base_1.14.1-1_amd64.deb  # 基础组件包,依赖于前面的包
nvidia-container-toolkit_1.14.1-1_amd64.deb       # 主要的工具包,依赖于以上所有包
libnvidia-container1-dbg_1.14.1-1_amd64.deb       # 调试符号包,只在调试问题时使用
libnvidia-container-dev_1.14.1-1_amd64.deb        # 开发包,只在进行开发时使用

其中最后两个安装包可以选择不下载和不安装

2. 执行下列命令安装NVIDIA Container Toolkit:

安装上面6个deb文件 

sudo dpkg *.deb

3. 查看NVIDIA Container Toolkit的版本以验证是否安装成功

nvidia-ctk --version

4. 设置Docker默认使用NVIDIA runtime

sudo nvidia-ctk runtime configure --runtime=docker

 复现结果:

(base) gpu@gpu01:~/dockerdir/nvidia-toolkit/install1.14$ sudo dpkg -i *.deb
(Reading database ... 220709 files and directories currently installed.)
Preparing to unpack libnvidia-container1_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container1:amd64 (1.14.1-1) over (1.12.0-1) ...
Selecting previously unselected package libnvidia-container1-dbg:amd64.
Preparing to unpack libnvidia-container1-dbg_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container1-dbg:amd64 (1.14.1-1) ...
Selecting previously unselected package libnvidia-container-dev:amd64.
Preparing to unpack libnvidia-container-dev_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container-dev:amd64 (1.14.1-1) ...
Preparing to unpack libnvidia-container-tools_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container-tools (1.14.1-1) over (1.12.0-1) ...
dpkg: warning: downgrading nvidia-container-toolkit from 1.17.8-1 to 1.14.1-1
Preparing to unpack nvidia-container-toolkit_1.14.1-1_amd64.deb ...
Unpacking nvidia-container-toolkit (1.14.1-1) over (1.17.8-1) ...
Preparing to unpack nvidia-container-toolkit-base_1.14.1-1_amd64.deb ...
Unpacking nvidia-container-toolkit-base (1.14.1-1) over (1.12.0-1) ...
dpkg: warning: unable to delete old directory '/etc/nvidia-container-runtime': Directory not empty
Setting up libnvidia-container1:amd64 (1.14.1-1) ...
Setting up libnvidia-container1-dbg:amd64 (1.14.1-1) ...
Setting up libnvidia-container-dev:amd64 (1.14.1-1) ...
Setting up libnvidia-container-tools (1.14.1-1) ...
Setting up nvidia-container-toolkit-base (1.14.1-1) ...
Setting up nvidia-container-toolkit (1.14.1-1) ...
Processing triggers for libc-bin (2.35-0ubuntu3.9) ...
/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 is not a symbolic link(base) gpu@gpu01:~/dockerdir/nvidia-toolkit/install1.14$ nvidia-ctk --version
NVIDIA Container Toolkit CLI version 1.14.1
commit: 6094effd58d88becdfb7900ef5df7fa274686620
(base) gpu@gpu01:~/dockerdir/nvidia-toolkit/install1.14$ sudo nvidia-ctk runtime configure --runtime=docker
INFO[0000] Config file does not exist; using empty config 
INFO[0000] Wrote updated config to /etc/docker/daemon.json 
INFO[0000] It is recommended that docker daemon be restarted. 

注意:/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link这里不是报错的意思,只是警告,这里其实已经安装成功了,用nvidia-ctk --version命令检查若输出版本号就成功安装了。

http://www.lryc.cn/news/571066.html

相关文章:

  • “智眸·家联“项目开发(一)
  • 【Java】抽象类与接口全解析
  • 【寻找Linux的奥秘】第十章:基础文件IO(上)
  • RGB解码:神经网络如何通过花瓣与叶片的数字基因解锁分类奥秘
  • 【云计算领域数学基础】组合数学优化
  • 基于nacos和gateway搭建微服务管理平台详细教程
  • elementui响应式数据类型变更情况
  • CVPR 2025最佳论文详解|VGGT:纯前馈Transformer架构,3D几何感知「大一统」模型来了!
  • FPGA基础 -- Verilog语言要素之值集合
  • Flutter - 原生交互 - 相机Camera - 曝光,缩放,录制视频
  • 【JSON-To-Video】AI智能体开发:为视频图片元素添加动效(滑入、旋转、滑出),附代码
  • 光谱相机的多模态成像技术详解
  • 数据仓库面试题合集⑥
  • 理解基本的RPC实现:从概念到实践
  • 2.涉及一个端到端的时间序列预测解决方案
  • 【Linux指南】文件内容查看与文本处理
  • 搜狗主动提交url并反馈快照更新软件(含源码)
  • 区间交集:区间选点
  • 231个web前端常用的javascript特效分享
  • 【C/C++开源库】适合嵌入式的定时器调度器
  • eXtremeComponents
  • Node.js Erlang比较
  • 第一次使用pycharm遇到的问题
  • 第二章 模型的评估与选择
  • java数据结构-栈、队列详解
  • LangGraph--框架核心思想
  • 3DS MAX三维建模平面基础篇(平面图形的创建和可编辑样条线的使用)
  • 怎样解决虚拟内存不足问题
  • 网站重构技术:XML,XHTML代码规范,样式表调用方式,CSS布局要点
  • 1433,3306,3389端口的利用