当前位置: 首页 > news >正文

LeetCode 热题 100 53. 最大子数组和

LeetCode 热题 100 | 53. 最大子数组和

大家好,今天我们来解决一道经典的算法题——最大子数组和。这道题在 LeetCode 上被标记为中等难度,要求我们找出一个具有最大和的连续子数组,并返回其最大和。下面我将详细讲解解题思路,并附上 Python 代码实现。


题目描述

给定一个整数数组 nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6。

解题思路

这道题的核心是找到一个连续子数组,使得其和最大。我们可以使用 动态规划分治法 来解决这个问题。

核心思想
  1. 动态规划

    • 定义 dp[i] 表示以 nums[i] 结尾的子数组的最大和。
    • 状态转移方程:
      dp[i] = max(dp[i-1] + nums[i], nums[i])
    • 最终结果是 dp 数组中的最大值。
  2. 分治法

    • 将数组分成左右两部分,分别求解左右部分的最大子数组和。
    • 求解跨越中间的最大子数组和。
    • 返回左部分、右部分和跨越中间的最大值。

代码实现

方法 1:动态规划
def maxSubArray(nums):""":type nums: List[int]:rtype: int"""n = len(nums)dp = [0] * ndp[0] = nums[0]  # 初始化 dp[0]max_sum = dp[0]  # 初始化最大和for i in range(1, n):dp[i] = max(dp[i-1] + nums[i], nums[i])  # 状态转移max_sum = max(max_sum, dp[i])  # 更新最大和return max_sum
方法 2:分治法
def maxSubArray(nums):""":type nums: List[int]:rtype: int"""def divide_and_conquer(left, right):if left == right:return nums[left]mid = (left + right) // 2# 分别求解左右部分的最大子数组和left_max = divide_and_conquer(left, mid)right_max = divide_and_conquer(mid + 1, right)# 求解跨越中间的最大子数组和left_sum = nums[mid]right_sum = nums[mid + 1]temp = left_sumfor i in range(mid - 1, left - 1, -1):temp += nums[i]left_sum = max(left_sum, temp)temp = right_sumfor i in range(mid + 2, right + 1):temp += nums[i]right_sum = max(right_sum, temp)cross_max = left_sum + right_sum# 返回左部分、右部分和跨越中间的最大值return max(left_max, right_max, cross_max)return divide_and_conquer(0, len(nums) - 1)

代码解析

动态规划
  1. 初始化

    • dp[0] 表示以 nums[0] 结尾的子数组的最大和,初始化为 nums[0]
    • max_sum 初始化为 dp[0]
  2. 状态转移

    • 对于每个 i,计算 dp[i],表示以 nums[i] 结尾的子数组的最大和。
    • 如果 dp[i-1] + nums[i]nums[i] 大,则继续扩展子数组;否则,从 nums[i] 重新开始。
  3. 更新最大和

    • 每次计算 dp[i] 后,更新 max_sum
  4. 返回结果

    • 返回 max_sum
分治法
  1. 递归终止条件

    • 如果 left == right,返回 nums[left]
  2. 递归求解左右部分

    • 分别递归求解左部分和右部分的最大子数组和。
  3. 求解跨越中间的最大子数组和

    • 从中间向左右扩展,求解跨越中间的最大子数组和。
  4. 返回最大值

    • 返回左部分、右部分和跨越中间的最大值。

复杂度分析

  • 时间复杂度

    • 动态规划:O(n),其中 n 是数组的长度。我们只需要遍历数组一次。
    • 分治法:O(n log n),每次递归将数组分成两部分,递归深度为 log n,每层需要 O(n) 的时间求解跨越中间的最大子数组和。
  • 空间复杂度

    • 动态规划:O(n),需要额外的 dp 数组。
    • 分治法:O(log n),递归调用栈的深度为 log n。

示例运行

示例 1
# 输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(maxSubArray(nums))  # 输出: 6
示例 2
# 输入:nums = [1]
nums = [1]
print(maxSubArray(nums))  # 输出: 1
示例 3
# 输入:nums = [5,4,-1,7,8]
nums = [5, 4, -1, 7, 8]
print(maxSubArray(nums))  # 输出: 23

总结

通过动态规划或分治法,我们可以高效地找到最大子数组和。动态规划的时间复杂度为 O(n),是最优的解法;分治法的时间复杂度为 O(n log n),适合理解分治思想。希望这篇题解对你有帮助!如果还有其他问题,欢迎继续提问!

关注我,获取更多算法题解和编程技巧!

http://www.lryc.cn/news/545277.html

相关文章:

  • DeepSeek 与大数据治理:AI 赋能数据管理的未来
  • 【时时三省】(C语言基础)浮点型数据
  • 【大模型】Ollama本地部署DeepSeek大模型:打造专属AI助手
  • 2025.3.2机器学习笔记:PINN文献阅读
  • 数据集笔记:新加坡 地铁(MRT)和轻轨(LRT)票价
  • 如何修改安全帽/反光衣检测AI边缘计算智能分析网关V4的IP地址?
  • Java 大视界 -- 基于 Java 的大数据分布式缓存一致性维护策略解析(109)
  • SyntaxError: positional argument follows keyword argument
  • Ruby基础
  • JMeter 断言最佳实践
  • 【Android】类加载器热修复-随记(二)
  • 从零开始用react + tailwindcss + express + mongodb实现一个聊天程序(八) 聊天框用户列表
  • Linux网络 TCP全连接队列与tcpdump抓包
  • 水滴tabbar canvas实现思路
  • 鸿蒙通过用户首选项实现数据持久化
  • 在Ubuntu中,某个文件的右下角有一把锁的标志是什么意思?
  • 7.1.1 计算机网络的组成
  • 使用 Docker 部署 RabbitMQ 的详细指南
  • 岛屿的数量(BFS)
  • 线上JVM OOM问题,如何排查和解决?
  • Linux的缓存I/O和无缓存IO
  • 【弹性计算】弹性裸金属服务器和神龙虚拟化(三):弹性裸金属技术
  • 【MySQL】(2) 库的操作
  • Hyper-V -docker-vmware 三者的关系
  • IP-----双重发布
  • 【新立电子】探索AI眼镜背后的黑科技,FPC如何赋能实时翻译与语音识别,点击了解未来沟通的新方式!
  • LeetCode 热题 100_寻找两个正序数组的中位数(68_4_困难_C++)(二分查找)(先合并再挑选中位数;划分数组(二分查找))
  • Java多线程与高并发专题——深入ReentrantReadWriteLock
  • 【Python 语法】算法合集
  • [STM32]从零开始的STM32 BSRR、BRR、ODR寄存器讲解