当前位置: 首页 > news >正文

【OS安装与使用】part6-ubuntu 22.04+CUDA 12.4运行MARL算法(多智能体强化学习)

文章目录

  • 一、待解决问题
    • 1.1 问题描述
    • 1.2 解决方法
  • 二、方法详述
    • 2.1 必要说明
    • 2.2 应用步骤
      • 2.2.1 下载源码并安装
      • 2.2.2 安装缺失的依赖项
      • 2.2.3 训练+执行MAPPO算法实例
  • 三、疑问
  • 四、总结


一、待解决问题

1.1 问题描述

已配置好基础的运行环境,尝试运行MARL算法。

1.2 解决方法

(1)基于论文源码,尝试实例运行MAPPO算法
论文链接:The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
源码链接:This is the official implementation of Multi-Agent PPO (MAPPO).

二、方法详述

2.1 必要说明

硬件、软件运行环境配置如下:

操作系统:ubuntu 22.04 LTS
显卡型号:Geforce RTX 4060 Mobile
显卡驱动:nvidia-550.120
CUDA版本:CUDA 12.4
预装软件:Anaconda | pip3
python版本:3.11.11
Pytorch版本:torch2.6.0 | torchaudio 2.6.0 | torchvision 0.21.0
TensorFlow版本: 2.17.0 (base + GPU)

2.2 应用步骤

2.2.1 下载源码并安装

github下载源码到本地,进入到虚拟环境开始安装

conda create -n mappo python=3.11
conda activate mappo
cd code/on-policy-main/
pip install -e .

出现个提示,但还是成功安装:

在这里插入图片描述

2.2.2 安装缺失的依赖项

由于最后测试代码是在MPE环境中,先安装依赖,再跑测试代码

conda install seaborn
cd onpolicy/scripts/train_mpe_scripts/
chmod +x ./train_mpe_spread.sh 
./train_mpe_spread.sh 

预期之内,缺少模块 ‘wandb’ ,报错如下:
在这里插入图片描述过程当中还有许多模块存在缺失。

ModuleNotFoundError: No module named ‘wandb’
ModuleNotFoundError: No module named ‘absl’
ModuleNotFoundError: No module named ‘gym’
ModuleNotFoundError: No module named ‘tensorboardX’
ModuleNotFoundError: No module named ‘imageio’

没有咱就安装!但遵从一个原则:
🪶🪶🪶 能用conda install就用,不能再用 pip3 install ,使用 conda 安装包可以避免依赖冲突,确保环境的稳定性 🪶🪶🪶

pip3 install wandb
#安装了pytorch就没必要再安装
#pip3 install torch torchvision torchaudio
conda install absl-py
pip3 install gym
conda install tensorboardX
conda install imageio
./train_mpe_spread.sh 

2.2.3 训练+执行MAPPO算法实例

./train_mpe_spread.sh 

重新执行脚本,出现如下画面,简而言之,wandb 是一个机器学习实验跟踪和分析工具,可以线上共享结果和日志记录,可以看个人需求自行选择是否使用该工具。

在这里插入图片描述
暂时先选择 “3” ,开始 “ 漫长 ”的训练过程。

Scenario simple_spread Algo rmappo Exp check updates 0/6250 episodes, total num timesteps 3200/20000000, FPS 1838.
average episode rewards is -224.03669357299805


Scenario simple_spread Algo rmappo Exp check updates 6245/6250 episodes, total num timesteps 19987200/20000000, FPS 2333.
average episode rewards is -112.2522234916687

看起来像是总共跑了6250个episodes,不断优化奖励值reward,平均episode reward从初始的-224到最终的-112。

最终还有一些其它的数据统计,看样子是完美运行了,运行环境搭建 “ 大成功 ”!!!

wandb: Run history:
wandb:           actor_grad_norm ▆▅█▆▇▆█▇▇▅▂▄▄▃▃▃▂▃▂▄▃▃▂▄▃▃▅▂▃▁▆▃▃▄▃▃▄▃▃▃
wandb: agent0/individual_rewards ▁▂▄▅▆▇▇▇▇█▇▇██▇█▇█▇█████████████████████
wandb: agent1/individual_rewards ▁▄▅▅▅▆▆▆▆▆▇▆▇▇▇▇▇█▇▇▇█▇▇▇█▇▇██▇███████▇█
wandb: agent2/individual_rewards ▁▃▄▅▆▇▇▇▇▇▇▇▇▇▇▇█▇▇▇▇▇█▇█▇█▇█▇█████▇▇▇██
wandb:   average_episode_rewards ▁▃▄▄▅▆▇▇▇▇▇▇▇█▇▇▇████▇▇█▇▇▇▇████▇███████
wandb:          critic_grad_norm █▆▄▄▂▃▂▂▂▂▁▁▁▂▁▂▂▂▂▁▂▃▁▂▂▁▂▂▂▂▁▂▁▁▂▁▁▂▂▁
wandb:              dist_entropy █▇▇▇▅▅▄▅▅▄▄▄▄▄▄▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁
wandb:               policy_loss █▄▄▁▃▄▁▁▂▄▂▂▁▂▂▃▃▁▂▁▃▂▂▁▂▂▁▂▂▁▂▂▃▁▂▂▃▁▃▃
wandb:                     ratio ▅▅▆▃█▃▄▄▆█▃▄▃▄▆▄▅▅▂▃▇▅▂▄▃▅▂▂▄▁▅▄▃▅▄▅▅▅▂▄
wandb:                value_loss █▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▂▁▁▁▂▂▁▁▁▁▁▁▂▂▁▁▁
wandb: 
wandb: Run summary:
wandb:           actor_grad_norm 0.22411
wandb: agent0/individual_rewards -1.17638
wandb: agent1/individual_rewards -1.19982
wandb: agent2/individual_rewards -1.19982
wandb:   average_episode_rewards -112.25222
wandb:          critic_grad_norm 0.03261
wandb:              dist_entropy 0.41139
wandb:               policy_loss -0.00934
wandb:                     ratio 0.99943
wandb:                value_loss 0.01067

(下一步,进入到MAPPO算法原理学习环节,可跳转至【动手学强化学习】篇,共同学习!!!)

💐💐💐 完结撒花 💐💐💐

三、疑问

暂无。

四、总结

  • 搭建一个学习环境,还是要以“目标导向”来实现,例如【OS安装与使用】这个系列就是为了运行MARL算法。学习的过程就像是 “搭积木” ,哪里缺失补充哪里,不要想着一口吃成一个胖子,一步一步解决当前存在的问题,脚踏实地。
  • 遇到问题,不要总想着依赖其它人或物,先自身寻找答案,耐心一些,仔细一些。先确定问题本质,如若是创新性的难题,无人遇到过,可直接找 “大同行” 交流;如若是大家都做过的事项,先从自身出发,寻找解决之道,尝试许多方法,依然无解过后,再另寻他见。
http://www.lryc.cn/news/540620.html

相关文章:

  • 【Python爬虫(35)】解锁Python多进程爬虫:高效数据抓取秘籍
  • HarmonyOS 开发套件 介绍 ——上篇
  • Linux 高级篇 日志管理、定制自己的Linux系统、备份与恢复
  • deepseek与其他大模型配合组合
  • 经验分享—WEB渗透测试中遇到加密内容的数据包该如何测试!
  • JUC并发—9.并发安全集合四
  • JSON格式,C语言自己实现,以及直接调用库函数(一)
  • MinkowskiEngine安装(CUDA11.8+torch2.0.1+RTX4070TI)
  • Spring监听器Listener
  • 【深度学习在图像配准中的应用与挑战】
  • 使用 Docker-compose 部署 MySQL
  • blender笔记2
  • 特殊符号_符号图案_特殊符号大全
  • Unity学习part4
  • 【AI绘画】大卫• 霍克尼风格——自然的魔法(一丹一世界)
  • MySQL日志undo log、redo log和binlog详解
  • C++中的指针
  • 拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!
  • 智能算法如何优化数字内容体验的个性化推荐效果
  • MATLAB在数据分析和绘图中的应用:从基础到实践
  • AI客服-接入deepseek大模型到微信(本地部署deepseek集成微信自动收发消息)
  • Host文件没有配置ip解析,导致请求接口速度慢
  • excel导入Mysql中时间格式异常
  • vue 判断一个属性值,如果是null或者空字符串或者是空格没有值的情况下,赋值为--
  • JavaWeb-Tomcat服务器
  • vue语法---样式操作-行内样式
  • 封装一个echarts的组件
  • 计算机网络安全之一:网络安全概述
  • Linux 性能调优简单指南
  • 第十一章: vue2-3 生命周期