当前位置: 首页 > news >正文

使用Python结合`stable-baselines3`库(包含PPO和TD3算法)以及`gym`库来实现分层强化学习的示例代码

以下是一个使用Python结合stable-baselines3库(包含PPO和TD3算法)以及gym库来实现分层强化学习的示例代码。该代码将环境中的动作元组分别提供给高层处理器PPO和低层处理器TD3进行训练,并实现单独训练和共同训练的功能。

代码实现

import gym
from stable_baselines3 import PPO, TD3
from stable_baselines3.common.vec_env import DummyVecEnv# 定义一个简单的示例环境
class SimpleEnv(gym.Env):def __init__(self):self.action_space = gym.spaces.Box(low=-1, high=1, shape=(2,), dtype=float)self.observation_space = gym.spaces.Box(low=-1, high=1, shape=(4,), dtype=float)self.state = self.observation_space.sample()def step(self, action):# 简单的状态转移和奖励计算self.state = self.state + action * 0.1reward = -((self.state ** 2).sum())done = Falseinfo = {}return self.state, reward, done, infodef reset(self):self.state = self.observation_space.sample()return self.statedef render(self, mode='human'):pass# 单独训练PPO
def train_ppo(env, total_timesteps=10000):model = PPO('MlpPolicy', env, verbose=1)model.learn(total_timesteps=total_timesteps)return model# 单独训练TD3
def train_td3(env, total_timesteps=10000):model = TD3('MlpPolicy', env, verbose=1)model.learn(total_timesteps=total_timesteps)return model# 共同训练
def co_train(env, ppo_total_timesteps=10000, td3_total_timesteps=10000):ppo_env = DummyVecEnv([lambda: env])td3_env = DummyVecEnv([lambda: env])ppo_model = PPO('MlpPolicy', ppo_env, verbose=1)td3_model = TD3('MlpPolicy', td3_env, verbose=1)ppo_model.learn(total_timesteps=ppo_total_timesteps)td3_model.learn(total_timesteps=td3_total_timesteps)return ppo_model, td3_modelif __name__ == "__main__":env = SimpleEnv()# 单独训练PPOprint("单独训练PPO...")ppo_model = train_ppo(env)# 单独训练TD3print("单独训练TD3...")td3_model = train_td3(env)# 共同训练print("共同训练PPO和TD3...")ppo_co_model, td3_co_model = co_train(env)

代码解释

  1. 环境定义SimpleEnv是一个简单的自定义环境,包含动作空间和观测空间的定义,以及stepresetrender方法。
  2. 单独训练函数
    • train_ppo:使用PPO算法对环境进行训练。
    • train_td3:使用TD3算法对环境进行训练。
  3. 共同训练函数co_train函数分别使用PPO和TD3算法对环境进行训练。
  4. 主程序:创建一个简单的环境实例,并分别调用单独训练和共同训练函数。

注意事项

  • 该示例中的环境是一个简单的自定义环境,你可以根据实际需求替换为其他gym环境。
  • stable-baselines3库提供了方便的接口来实现PPO和TD3算法,你可以根据需要调整训练参数。
  • 分层强化学习的实现通常需要更复杂的架构和逻辑,该示例仅为一个简单的演示。
http://www.lryc.cn/news/540039.html

相关文章:

  • 【论文笔记】MambaGlue: Fast and Robust Local Feature Matching With Mamba
  • 基于 Stanford CoreNLP 的中文自然语言处理
  • python 量化交易入门到提升详细教程,python量化交易教程
  • 如何设置爬虫的访问频率?
  • 前端循环全解析:JS/ES/TS 循环写法与实战示例
  • 大气体育直播模板赛事扁平自适应模板源码
  • vue3学习1
  • java机器学习计算指标动态阈值
  • mac os设置jdk版本
  • Python正则表达式学习
  • ShenNiusModularity项目源码学习(10:ShenNius.FileManagement项目分析)
  • mysql查看binlog日志
  • Node.js高频面试题精选及参考答案
  • TaskBuilder创建客户信息列表页面
  • Linux Iptables示例一则
  • 新手小白如何挖掘cnvd通用漏洞之存储xss漏洞(利用xss钓鱼)
  • 【CXX】4 跨平台构建系统特性对比
  • MySQL 如何使用EXPLAIN工具优化SQL
  • 沃丰科技大模型标杆案例|周大福集团统一大模型智能服务中心建设实践
  • 代码随想录day16
  • 常见的软件测试模型及特点
  • tailwindcss学习01
  • C语言复杂度分析
  • DeepSeek服务器繁忙 多种方式继续优雅的使用它
  • Bootstrap Blazor UI 中 <Table> 组件 <TableColumn> 使用备忘01:EF Core 外码处理
  • 云原生数据抽象与弹性加速:Fluid开源系统的技术解析
  • 【Python爬虫(29)】爬虫数据生命线:质量评估与监控全解
  • VSCode AI提效工具,通义灵码前端开发体验
  • 在实时大数据处理中如何平衡延迟和吞吐量
  • 一款开源可独立部署的知识管理工具!!