当前位置: 首页 > news >正文

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)【ESP32指向鼠标】

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)

在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。
四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器人学、计算机图形学和航空航天 等领域。

四元数的定义

一个四元数 q 由四个实数组成:
q = w + x i + y j + z k q=w+xi+yj+zk q=w+xi+yj+zk
其中:w,x,y,z 是实数;i,j,k 是虚单位,满足特定的乘法规则

旋转的基本表示方式

方式表示方法优缺点
欧拉角(Euler Angles)(α,β,γ) 对应绕 X, Y, Z 轴的旋转优点:直观易理解,和现实生活的旋转方式类似。缺点:存在万向锁(Gimbal Lock)问题,计算复杂。
旋转矩阵(Rotation Matrix)3×3 矩阵优点:适用于线性代数计算,方便复合旋转。缺点:需要存储 9 个值,数值误差累积会导致非正交性。
四元数(Quaternion)q=w+xi+yj+zk优点:旋转计算简单,存储更紧凑(只需要 4 个数),避免万向锁,插值平滑。缺点:不直观,不容易手动调整。

旋转四元数的定义

一个 旋转四元数q 表示围绕单位向量 (x,y,z) 旋转角度 θ 的旋转:
q = cos ⁡ θ 2 + sin ⁡ θ 2 ( x i + y j + z k ) q=\cos\frac{\theta}{2}+\sin\frac{\theta}{2}(x\mathbf{i}+y\mathbf{j}+z\mathbf{k}) q=cos2θ+sin2θ(xi+yj+zk)
或写成向量形式:
q = ( cos ⁡ θ 2 , x sin ⁡ θ 2 , y sin ⁡ θ 2 , z sin ⁡ θ 2 ) q=\left(\cos\frac{\theta}{2},x\sin\frac{\theta}{2},y\sin\frac{\theta}{2},z\sin\frac{\theta}{2}\right) q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)
其中:θ 是旋转角度
(x,y,z) 是旋转轴(必须是单位向量)
(xi,yj,zk) 是四元数的虚部,表示旋转方向
注意:旋转四元数必须是单位四元数,即满足:
∣ q ∣ = w 2 + x 2 + y 2 + z 2 = 1 |q|=\sqrt{w^2+x^2+y^2+z^2}=1 q=w2+x2+y2+z2 =1

使用四元数进行 3D 旋转

假设有一个点 v = ( v x , v y , v z ) \mathbf{v}=(v_x,v_y,v_z) v=(vx,vy,vz),我们想用四元数 q 旋转它。方法如下:

  • 将点转换为纯四元数(虚部存储向量坐标)
    p = ( 0 , v x , v y , v z ) p=(0,v_x,v_y,v_z) p=(0,vx,vy,vz)
  • 计算旋转后的点
    p ′ = q p q − 1 p^{\prime}=qpq^{-1} p=qpq1
    其中: q − 1 q^{-1} q1是四元数的逆(单位四元数的逆就是它的共轭)
    旋转后的点 p ′ p^{\prime} p也是一个纯四元数,其中的虚部给出新坐标。
  • 单位四元数的逆
    q − 1 = q ∗ = ( cos ⁡ θ 2 , − x sin ⁡ θ 2 , − y sin ⁡ θ 2 , − z sin ⁡ θ 2 ) q^{-1}=q^*=(\cos\frac{\theta}{2},-x\sin\frac{\theta}{2},-y\sin\frac{\theta}{2},-z\sin\frac{\theta}{2}) q1=q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)

例程(C语言)

旋转 (1, 0, 0) 向量 绕 Y 轴旋转 90°。
计算后,结果应该接近 (0, 0, -1),即 X 轴向量变成 Z 轴负方向。

#include <stdio.h>
#include <math.h>// 定义四元数结构体
typedef struct {double w, x, y, z;
} Quaternion;// 定义向量结构体
typedef struct {double x, y, z;
} Vector3;// 归一化四元数(单位四元数)
Quaternion normalize(Quaternion q) {double magnitude = sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z);q.w /= magnitude;q.x /= magnitude;q.y /= magnitude;q.z /= magnitude;return q;
}// 计算四元数的共轭
Quaternion conjugate(Quaternion q) {Quaternion conj = {q.w, -q.x, -q.y, -q.z};return conj;
}// 计算两个四元数的乘法
Quaternion multiply(Quaternion q1, Quaternion q2) {Quaternion result;result.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;result.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;result.y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;result.z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;return result;
}// 旋转向量 v 使用四元数 q
Vector3 rotate_vector(Vector3 v, Quaternion q) {Quaternion p = {0, v.x, v.y, v.z}; // 将向量转换为纯四元数Quaternion q_conj = conjugate(q);  // 计算四元数共轭// 计算旋转后的四元数 p' = q * p * q^(-1)Quaternion temp = multiply(q, p);Quaternion rotated = multiply(temp, q_conj);// 结果的虚部即为旋转后的向量Vector3 result = {rotated.x, rotated.y, rotated.z};return result;
}// 生成绕 (ux, uy, uz) 轴旋转 theta 角度的四元数
Quaternion from_axis_angle(double ux, double uy, double uz, double theta) {Quaternion q;double half_theta = theta * M_PI / 360.0; // 角度转弧度并除以 2double sin_half_theta = sin(half_theta);q.w = cos(half_theta);q.x = ux * sin_half_theta;q.y = uy * sin_half_theta;q.z = uz * sin_half_theta;return normalize(q);
}int main() {// 定义一个向量 (1, 0, 0)Vector3 v = {1, 0, 0};// 绕 Y 轴旋转 90 度的四元数Quaternion q = from_axis_angle(0, 1, 0, 90);// 旋转向量Vector3 rotated_v = rotate_vector(v, q);// 输出旋转后的结果printf("旋转后向量: (%f, %f, %f)\n", rotated_v.x, rotated_v.y, rotated_v.z);return 0;
}

代码解析

  1. 定义数据结构
    Quaternion 结构体存储四元数(w, x, y, z)
    Vector3 结构体存储 3D 向量(x, y, z)
  2. 归一化四元数
    旋转四元数必须是 单位四元数,所以 normalize() 函数保证四元数的模长为 1。
  3. 计算四元数共轭
    conjugate() 计算 (对于单位四元数,逆就是共轭)。
  4. 四元数乘法
    multiply() 执行两个四元数的乘法,用于计算旋转变换。
  5. 向量旋转
    rotate_vector() 采用公式 计算旋转后的向量。
  6. 从轴-角度转换为四元数
    from_axis_angle() 计算沿任意轴旋转 theta 角度的旋转四元数。

如预期,原来的 (1, 0, 0) 经过 绕 Y 轴旋转 90° 后变成了 (0, 0, -1)

http://www.lryc.cn/news/538023.html

相关文章:

  • JavaScript 内置对象-日期对象
  • 本地大模型编程实战(19)RAG(Retrieval Augmented Generation,检索增强生成)(3)
  • DeepSeek与ChatGPT:AI语言模型的全面对决
  • 2024年年终总结
  • 利用 Valgrind 检测 C++ 内存泄露
  • Python中的HTTP客户端库:httpx与request | python小知识
  • 【Python】Python入门基础——环境搭建
  • 2025 pwn_A_childs_dream
  • 面试题整理:操作系统
  • 构建未来教育的基石:智慧校园与信息的重要性
  • C# 控制台相关 API 与随机数API
  • 【踩坑】⭐️MyBatis的Mapper接口中不建议使用重载方法
  • CSS Grid 网格布局,以及 Flexbox 弹性盒布局模型,它们的适用场景是什么?
  • HDFS体系结构
  • AI大模型的技术突破与传媒行业变革
  • vscode/cursor+godot C#中使用socketIO
  • 分段线性插值
  • 制作一个项目用于研究elementUI的源码
  • [AI]从零开始的llama.cpp部署与DeepSeek格式转换、量化、运行教程
  • vLLM专题(二):安装-CPU
  • JVM 底层探秘:对象创建的详细流程、内存分配机制解析以及线程安全保障策略
  • 【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-Chapter14-DOM
  • 外汇掉期(FX Swap):全球企业管理外汇风险的关键工具(中英双语)
  • verilog程序设计及SystemVerilog验证
  • Unity DeepSeek API 聊天接入教程(0基础教学)
  • 力扣 乘积最大子数组
  • ABP - 事件总线之分布式事件总线
  • osgearth控件显示中文(八)
  • 基于opencv的 24色卡IQA评测算法源码-可完全替代Imatest
  • webpack打包优化策略