当前位置: 首页 > news >正文

算法05-堆排序

堆排序详解

堆排序(Heap Sort)是一种基于二叉堆数据结构的排序算法。它的核心思想是利用堆的性质(最大堆或最小堆)来实现排序。堆排序分为两个主要步骤:建堆排序


1. 什么是堆?

堆是一种特殊的完全二叉树,分为两种:

  • 最大堆:每个节点的值都大于或等于其子节点的值。
  • 最小堆:每个节点的值都小于或等于其子节点的值。

在堆排序中,通常使用最大堆


2. 堆排序的步骤
步骤1:建堆
  • 将待排序的数组看作一个完全二叉树。
  • 从最后一个非叶子节点开始,逐步调整每个子树,使其满足最大堆的性质。
  • 调整的过程称为堆化(Heapify)
    • 比较当前节点与其左右子节点,找到最大值。
    • 如果最大值不是当前节点,则交换它们的位置。
    • 继续向下调整,直到子树满足最大堆的性质。
步骤2:排序
  • 将堆顶元素(最大值)与数组的最后一个元素交换,此时最大值已经放到正确的位置。
  • 排除最后一个元素,对剩余的堆重新进行堆化,使其再次满足最大堆的性质。
  • 重复上述过程,直到堆中只剩下一个元素。

3. 堆排序的特点
时间复杂度
  • 建堆:( O(n) )
  • 排序:每次堆化需要 ( O(\log n) ),总共需要 ( n-1 ) 次堆化,因此排序的时间复杂度为 ( O(n \log n) )。
  • 总时间复杂度:( O(n \log n) )
空间复杂度
  • 堆排序是原地排序算法,不需要额外的存储空间,空间复杂度为 ( O(1) )。
稳定性
  • 堆排序是不稳定的排序算法,因为在交换堆顶元素和最后一个元素时,可能会改变相同元素的相对顺序。

4. 堆排序的优缺点
优点
  • 时间复杂度稳定,最坏情况下也是 ( O(n \log n) )。
  • 不需要额外的存储空间,适合内存受限的环境。
缺点
  • 不稳定排序,可能改变相同元素的相对顺序。
  • 在实际应用中,由于频繁的交换操作,堆排序的常数因子较大,性能可能不如快速排序或归并排序。

5. 堆排序的应用场景
  • 适合需要排序大规模数据的场景,尤其是对内存使用有严格限制的环境。
  • 常用于实现优先队列。

总结
  • 堆排序是一种高效的排序算法,通过构建最大堆并逐步提取最大值来实现排序。虽然它的时间复杂度较好,但由于其不稳定性和较大的常数因子,在实际应用中需要根据具体需求选择是否使用。
  • 堆排序通过建堆和排序两个步骤,逐步将最大值放到数组末尾,最终实现排序。它的时间复杂度为O(nlogn),是一种高效的排序算法。

堆排序详解(结合例子和图形)

我们通过一个具体的例子和图形来讲解堆排序的过程。

例子

假设我们有一个待排序的数组:
[4, 10, 3, 5, 1]
我们的目标是将这个数组按升序排列。

步骤1:建堆

将数组看作一个完全二叉树:

        4/ \10  3/ \5   1
目标:

将这个二叉树调整为最大堆(每个节点的值都大于或等于其子节点的值)。

调整过程
  • (1) 从最后一个非叶子节点开始(节点 10)。

  • (2) 比较节点 10 和其子节点 5 和 1,发现 10 已经是最大值,无需调整。

  • (3) 调整节点 4:

    • 比较节点 4 和其子节点 10 和 3,发现 10 是最大值。

    • 交换 4 和 10。

    • 调整后的树:

          10/ \4    3/ \
      5   1
      
  • (4) 继续调整节点 4:

    • 比较节点 4 和其子节点 5 和 1,发现 5 是最大值。

    • 交换 4 和 5。

    • 调整后的树:

          10/ \5    3/ \
      4   1
      

现在,树已经是一个最大堆。


步骤2:排序
目标:将堆顶元素(最大值)放到数组末尾,并逐步缩小堆的范围。
排序过程
  • (1) 将堆顶元素 10 与最后一个元素 1 交换:

    [1, 5, 3, 4, 10]

    树结构:

          1/ \5    3/4
    
  • (2) 排除最后一个元素 10,对剩余部分重新堆化:

    • 调整节点 1:

      • 比较节点 1 和其子节点 5 和 3,发现 5 是最大值。

      • 交换 1 和 5。

      • 调整后的树:

            5/ \1    3/
        4
        
    • 继续调整节点 1:

      • 比较节点 1 和其子节点 4,发现 4 是最大值。

      • 交换 1 和 4。

      • 调整后的树:

            5/ \4    3/
        1
        
  • (3) 将堆顶元素 5 与最后一个元素 1 交换:
    [1, 4, 3, 5, 10]

    树结构:

          1/ \4    3
    
  • (4) 排除最后一个元素 5,对剩余部分重新堆化:

    • 调整节点 1:

      • 比较节点 1 和其子节点 4 和 3,发现 4 是最大值。

      • 交换 1 和 4。

      • 调整后的树:

        4/ \
      1    3
      
  • (5) 将堆顶元素 4 与最后一个元素 3 交换:

[3, 1, 4, 5, 10]

树结构:

      3/1
  • (6) 排除最后一个元素 4,对剩余部分重新堆化:

    • 调整节点 3:

    • 比较节点 3 和其子节点 1,发现 3 已经是最大值。

    • 无需调整。

  • (7) 将堆顶元素 3 与最后一个元素 1 交换:
    [1, 3, 4, 5, 10]

最终结果

数组已经按升序排列:
[1, 3, 4, 5, 10]

图形总结
  • (1) 初始数组:

    [4, 10, 3, 5, 1]

  • (2) 建堆后:

    [10, 5, 3, 4, 1]

  • (3) 排序过程:

    每次将堆顶元素放到数组末尾,并重新堆化。

  • (4) 最终结果:

[1, 3, 4, 5, 10]

示例代码

def heapify(arr, n, i):"""堆化函数:调整以 i 为根的子树,使其满足最大堆的性质。:param arr: 待排序的数组:param n: 堆的大小:param i: 当前根节点的索引"""largest = i  # 初始化最大值为根节点left = 2 * i + 1  # 左子节点的索引right = 2 * i + 2  # 右子节点的索引# 如果左子节点存在且大于根节点if left < n and arr[left] > arr[largest]:largest = left# 如果右子节点存在且大于根节点if right < n and arr[right] > arr[largest]:largest = right# 如果最大值不是根节点,则交换并继续堆化if largest != i:arr[i], arr[largest] = arr[largest], arr[i]  # 交换heapify(arr, n, largest)  # 递归调整子树def heap_sort(arr):"""堆排序函数:param arr: 待排序的数组"""n = len(arr)# 步骤1:建堆# 从最后一个非叶子节点开始,逐步调整for i in range(n // 2 - 1, -1, -1):heapify(arr, n, i)# 步骤2:排序# 将堆顶元素(最大值)与数组末尾元素交换,并重新堆化for i in range(n - 1, 0, -1):arr[0], arr[i] = arr[i], arr[0]  # 将最大值放到数组末尾heapify(arr, i, 0)  # 重新堆化剩余部分# 示例
arr = [4, 10, 3, 5, 1]
print("排序前:", arr)
heap_sort(arr)
print("排序后:", arr)

© 著作权归作者所有

http://www.lryc.cn/news/535031.html

相关文章:

  • Arrays工具类详解
  • 无人机图像拼接数据的可视化与制图技术:以植被监测为例
  • 在 debian 12 上安装 mysqlclient 报错
  • python基础入门:7.1迭代器与生成器
  • Docker 容器 Elasticsearch 启动失败完整排查记录
  • 达梦数据使用笔记
  • 操作系统中的任务调度算法
  • Linux 虚拟服务器(LVS)技术详解
  • AIoT时代来临,物联网技术如何颠覆未来生活?
  • C++17 新特性解析
  • 嵌入式软件C语言面试常见问题及答案解析(四)
  • 在 C# 中,处理 Excel 和 PDF 文件的库有很多。以下是一些比较常用的选择
  • 绩效归因概述
  • Spring Boot 中加载多个 YAML 配置文件
  • 厚植创新实力、聚焦生物科技:柏强制药的责任与机遇
  • Linux中getifaddrs函数
  • 【HarmonyOS Next 自定义可拖拽image】
  • 解决No module named ‘llama_index.llms.huggingface‘
  • SearchBar组件的功能与用法
  • 13.推荐系统的性能优化
  • Grafana-使用Button修改MySQL数据库
  • 飞科FH6218电吹风异响维修
  • 分治下的快速排序(典型算法思想)—— OJ例题算法解析思路
  • Unity3D实现显示模型线框(shader)
  • 深度剖析责任链模式
  • 基于 openEuler 构建 LVS-DR 群集
  • CSS3+动画
  • 使用DeepSeek和Kimi快速自动生成PPT
  • DeepSeek使用最佳实践
  • 机器学习 - 进一步理解最大似然估计和高斯分布的关系