当前位置: 首页 > news >正文

【WB 深度学习实验管理】利用 Hugging Face 实现高效的自然语言处理实验跟踪与可视化

本文使用到的 Jupyter Notebook 可在GitHub仓库002文件夹找到,别忘了给仓库点个小心心~~~
https://github.com/LFF8888/FF-Studio-Resources
在这里插入图片描述

在自然语言处理领域,使用Hugging Face的Transformers库进行模型训练已经成为主流。然而,随着模型复杂度的增加和实验次数的增多,如何高效地跟踪和管理每一次实验的结果变得尤为重要。传统的日志记录方法往往繁琐且不够直观,难以满足快速迭代的需求。幸运的是,Weights & Biases(W&B)提供了一种轻量级的解决方案,能够无缝集成到Hugging Face的工作流程中,帮助开发者自动跟踪实验数据、可视化模型性能,并轻松比较不同架构和超参数设置的效果。本文将详细介绍如何利用这一强大组合,让每一次实验都清晰可溯,每一次优化都有据可依。

Hugging Face + W&B

通过无缝的 W&B 集成,快速可视化你的 Hugging Face 模型性能。
比较超参数、输出指标以及系统统计数据,如 GPU 利用率。

🤔 为什么我应该使用 W&B?

在这里插入图片描述

  • 统一仪表盘:所有模型指标和预测的中央存储库
  • 轻量级:无需代码更改即可与 Hugging Face 集成
  • 可访问:个人和学术团队免费使用
  • 安全:所有项目默认私有
  • 可信:被 OpenAI、Toyota、Lyft 等机器学习团队使用

将 W&B 视为机器学习模型的 GitHub——将机器学习实验保存到你的私有托管仪表盘。快速实验,确保所有模型版本都已保存,无论你在哪里运行脚本。
W&B 的轻量级集成适用于任何 Python 脚本,你只需注册一个免费的 W&B 账户即可开始跟踪和可视化你的模型。

在 Hugging Face Transformers 仓库中,我们已将 Trainer 配置为在每个日志步骤自动将训练和评估指标记录到 W&B。
以下是集成工作原理的深入分析:Hugging Face + W&B 报告。

🚀 安装、导入和登录

安装 Hugging Face 和 Weights & Biases 库,以及本教程的 GLUE 数据集和训练脚本。

  • Hugging Face Transformers:自然语言模型和数据集
  • Weights & Biases:实验跟踪和可视化
  • GLUE 数据集:语言理解基准数据集
  • GLUE 脚本:用于序列分类的模型训练脚本
!pip install datasets wandb evaluate accelerate -qU
!wget https://raw.githubusercontent.com/huggingface/transformers/master/examples/pytorch/text-classification/run_glue.py
# run_glue.py 脚本需要 transformers dev 版本
!pip install -q git+https://github.com/huggingface/transformers

🖊️ 注册免费账户 →

🔑 输入你的 API 密钥

注册后,运行下一个单元格并点击链接获取你的 API 密钥以验证此笔记本。

import wandb
wandb.login()

可选地,我们可以设置环境变量以自定义 W&B 日志记录。查看 文档。

# 可选:记录梯度和参数
%env WANDB_WATCH=all

👟 训练模型

接下来,调用下载的训练脚本 run_glue.py,并查看训练自动跟踪到 Weights & Biases 仪表盘。该脚本在 Microsoft Research Paraphrase Corpus 上微调 BERT——包含人类标注的句子对,指示它们是否语义等价。

%env WANDB_PROJECT=huggingface-demo
%env TASK_NAME=MRPC!python run_glue.py \--model_name_or_path bert-base-uncased \--task_name $TASK_NAME \--do_train \--do_eval \--max_seq_length 256 \--per_device_train_batch_size 32 \--learning_rate 2e-4 \--num_train_epochs 3 \--output_dir /tmp/$TASK_NAME/ \--overwrite_output_dir \--logging_steps 50

👀 在仪表盘中可视化结果

点击上面打印的链接,或访问 wandb.ai 查看你的结果实时流入。浏览器中查看你的运行的链接将在所有依赖项加载后出现——查找以下输出:“wandb: 🚀 View run at [URL to your unique run]”

可视化模型性能 轻松查看数十个实验,放大有趣的发现,并可视化高维数据。

在这里插入图片描述

比较架构 这是一个比较 BERT vs DistilBERT 的示例——通过自动折线图可视化,可以轻松查看不同架构如何影响训练期间的评估准确性。

在这里插入图片描述

📈 默认情况下轻松跟踪关键信息

Weights & Biases 为每个实验保存一个新的运行。以下是默认保存的信息:

  • 超参数:模型设置保存在 Config 中
  • 模型指标:流式传输的指标时间序列数据保存在 Log 中
  • 终端日志:命令行输出保存在选项卡中
  • 系统指标:GPU 和 CPU 利用率、内存、温度等

🤓 了解更多!

  • 文档:Weights & Biases 和 Hugging Face 集成的文档
  • 视频:教程、与从业者的访谈等,请访问我们的 YouTube 频道
  • 联系我们:如有问题,请发送邮件至 contact@wandb.com
http://www.lryc.cn/news/533788.html

相关文章:

  • 基础入门-网站协议身份鉴权OAuth2安全Token令牌JWT值Authirization标头
  • C语言基础系列【3】VSCode使用
  • MySQL-5.7.44安装(CentOS7)
  • 服务端与多客户端照片的传输,recv,send
  • JS实现灯光闪烁效果
  • SpringCloud面试题----Nacos和Eureka的区别
  • verilog练习:i2c slave 模块设计
  • 3.5 Go(特殊函数)
  • Android的MQTT客户端实现
  • 国产编辑器EverEdit - 编辑辅助功能介绍
  • WPF 在后台使TextBox失去焦点的方法
  • 工作案例 - python绘制excell表中RSRP列的CDF图
  • CTF SQL注入学习笔记
  • element-plus el-tree-select 修改 value 字段
  • 基于javaweb的SpringBoot小区智慧园区管理系统(源码+文档+部署讲解)
  • SpringBoot学习之shardingsphere实现分库分表(基于Mybatis-Plus)(四十九)
  • 23.PPT:校摄影社团-摄影比赛作品【5】
  • Baumer工业相机堡盟相机的相机传感器芯片清洁指南
  • Spring Boot 整合 JPA 实现数据持久化
  • 快速在wsl上部署学习使用c++轻量化服务器-学习笔记
  • 【R语言】数据操作
  • MariaDB MaxScale实现mysql8主从同步读写分离
  • 【python】简单的flask做页面。一组字母组成的所有单词。这里的输入是一组字母,而输出是所有可能得字母组成的单词列表
  • 单片机之基本元器件的工作原理
  • 吴恩达深度学习——卷积神经网络的特殊应用
  • 安宝特方案 | AR助力制造业安全巡检智能化革命!
  • Unity-Mirror网络框架-从入门到精通之Discovery示例
  • 项目的虚拟环境的搭建与pytorch依赖的下载
  • 现代前端工程化实践:高效构建的秘密
  • ARM Linux Qt使用JSON-RPC实现前后台分离