当前位置: 首页 > news >正文

Java 中 LinkedList 的底层源码

        在 Java 的集合框架中,LinkedList是一个独特且常用的成员。它基于双向链表实现,与数组结构的集合类如ArrayList有着显著差异。深入探究LinkedList的底层源码,有助于我们更好地理解其工作原理和性能特点,以便在实际开发中做出更合适的选择。

        这里如何具体在idea里查看底层源码的教程在我ArrayList那篇文章有,基本大差不差,具体步骤我就不再演示了,我直接把所有底层源码总结下来供大家参考。

咱们可以根据这个代码逻辑自己推一下,捋清楚了思路就好理解多了。

一、基本结构与成员变量

LinkedList的底层核心是一个双向链表,其内部通过节点来存储数据。以下是LinkedList源码中关键的成员变量定义:

// 头节点
transient Node<E> first;
// 尾节点
transient Node<E> last;
// 元素数量
transient int size = 0;
// 底层双向链表节点的内部类
private static class Node<E> {// 当前节点的元素值E item;// 指向下一个节点的引用Node<E> next;// 指向前一个节点的引用Node<E> prev;Node(Node<E> prev, E element, Node<E> next) {this.item = element;this.next = next;this.prev = prev;}
}

firstlast分别指向双向链表的头节点和尾节点,通过它们可以方便地对链表进行遍历和操作。size变量用于记录链表中元素的个数。Node内部类则定义了链表节点的结构,每个节点不仅存储了元素值item,还持有指向前驱节点prev和后继节点next的引用,这使得双向链表能够灵活地在两个方向上进行遍历和元素的插入、删除等操作。

二、构造函数剖析

无参构造函数

public LinkedList() {
}

无参构造函数非常简洁,它只是创建了一个空的LinkedList对象。此时,firstlast都为nullsize为 0,链表中没有任何元素。

带集合参数的构造函数

public LinkedList(Collection<? extends E> c) {this();addAll(c);
}

该构造函数先调用无参构造函数创建一个空链表,然后通过addAll方法将传入集合中的所有元素添加到新创建的LinkedList中。这为我们在初始化LinkedList时提供了一种便捷的方式,可以直接将其他集合中的元素导入进来。

三、元素添加操作

在链表尾部添加元素

add(E e)方法用于在链表尾部添加一个元素,它是LinkedList中最常用的添加元素的方式之一。

public boolean add(E e) {linkLast(e);return true;
}
void linkLast(E e) {final Node<E> l = last;final Node<E> newNode = new Node<>(l, e, null);last = newNode;if (l == null)first = newNode;elsel.next = newNode;size++;modCount++;
}

add(E e)方法内部调用了linkLast方法。linkLast方法首先记录原链表的尾节点l,然后创建一个新的节点newNode,使其前驱指向原尾节点l,后继为null。接着更新last指向新节点,如果原尾节点为空,说明链表之前是空的,此时first也指向新节点;否则将原尾节点的后继指向新节点。最后,更新元素数量size和修改次数modCount。这个过程使得在链表尾部添加元素的操作非常高效,时间复杂度为 O (1)。

在指定位置插入元素

add(int index, E element)方法可以在链表的指定位置插入一个元素。

public void add(int index, E element) {checkPositionIndex(index);if (index == size)linkLast(element);elselinkBefore(element, node(index));
}

该方法首先调用checkPositionIndex方法检查索引是否越界(要求0 <= index <= size)。如果索引等于size,说明要在链表尾部插入元素,直接调用linkLast方法即可;否则,调用linkBefore方法在指定节点前插入元素。这里的node(index)方法用于获取指定索引位置的节点:

Node<E> node(int index) {if (index < (size >> 1)) {Node<E> x = first;for (int i = 0; i < index; i++)x = x.next;return x;} else {Node<E> x = last;for (int i = size - 1; i > index; i--)x = x.prev;return x;}
}

node(index)方法通过判断索引与链表长度一半的大小关系,决定从链表头部还是尾部开始遍历查找指定索引位置的节点。如果索引小于链表长度的一半,从链表头部开始遍历;否则从链表尾部开始遍历。这种优化策略可以减少遍历的节点数量,提高查找效率。

四、元素删除操作

移除指定位置的元素

remove(int index)方法用于移除链表中指定位置的元素。

public E remove(int index) {checkElementIndex(index);return unlink(node(index));
}

该方法先调用checkElementIndex方法检查索引是否越界(要求0 <= index < size),然后通过node(index)方法获取指定索引位置的节点,最后调用unlink方法移除该节点并返回其存储的元素。

E unlink(Node<E> x) {final E element = x.item;final Node<E> next = x.next;final Node<E> prev = x.prev;if (prev == null) {first = next;} else {prev.next = next;x.prev = null;}if (next == null) {last = prev;} else {next.prev = prev;x.next = null;}x.item = null;size--;modCount++;return element;
}

unlink方法通过调整节点之间的引用关系,将指定节点从链表中移除。它先保存要移除节点的元素值、后继节点和前驱节点,然后根据前驱和后继节点的情况更新链表的头节点first或尾节点last,以及相关节点的前驱和后继引用。最后将被移除节点的元素值置为null,更新元素数量size和修改次数modCount,并返回被移除的元素。

移除指定元素的第一个匹配项

remove(Object o)方法用于移除链表中指定元素的第一个匹配项。

public boolean remove(Object o) {if (o == null) {for (Node<E> x = first; x != null; x = x.next) {if (x.item == null) {unlink(x);return true;}}} else {for (Node<E> x = first; x != null; x = x.next) {if (o.equals(x.item)) {unlink(x);return true;}}}return false;
}

该方法通过遍历链表,分别处理要移除的元素为null和不为null的情况。找到匹配的元素后,调用unlink方法将其移除并返回true;如果遍历完链表都没有找到匹配元素,则返回false

五、元素查找操作

查找指定元素首次出现的索引

indexOf(Object o)方法用于返回指定元素在链表中首次出现的索引,如果不存在则返回 -1。

public int indexOf(Object o) {int index = 0;if (o == null) {for (Node<E> x = first; x != null; x = x.next) {if (x.item == null)return index;index++;}} else {for (Node<E> x = first; x != null; x = x.next) {if (o.equals(x.item))return index;index++;}}return -1;
}

该方法从链表头部开始遍历,分别处理查找元素为null和不为null的情况,找到匹配元素时返回其索引,遍历完链表都未找到则返回 -1。

查找指定元素最后一次出现的索引

lastIndexOf(Object o)方法用于返回指定元素在链表中最后一次出现的索引,如果不存在则返回 -1。

public int lastIndexOf(Object o) {int index = size;if (o == null) {for (Node<E> x = last; x != null; x = x.prev) {index--;if (x.item == null)return index;}} else {for (Node<E> x = last; x != null; x = x.prev) {index--;if (o.equals(x.item))return index;}}return -1;
}

该方法从链表尾部开始遍历,分别处理查找元素为null和不为null的情况,找到匹配元素时返回其索引,遍历完链表都未找到则返回 -1。

通过对LinkedList底层源码的剖析,我们清楚地了解了它的结构和各种操作的实现原理。LinkedList在插入和删除元素时具有高效性,尤其是在链表中间位置进行操作时,不需要像ArrayList那样进行大量元素的移动。然而,由于其基于链表结构,随机访问元素的时间复杂度较高,需要遍历链表来查找指定位置的元素。因此,在实际开发中,我们应根据具体的需求和操作场景,合理选择使用LinkedList或其他集合类,以达到最佳的性能和功能实现。

http://www.lryc.cn/news/532574.html

相关文章:

  • 使用服务器部署DeepSeek-R1模型【详细版】
  • k8s,1.修改容器内主机名和/etc/hosts 文件,2.root特权容器,3.pod安全策略(基于名称空间
  • MSPFN 代码复现
  • 除了console.error,还有什么更好的错误处理方式?
  • 力扣.270. 最接近的二叉搜索树值(中序遍历思想)
  • Yageo国巨的RC系列0402封装1%电阻库来了
  • wait/notify/join/设计模式
  • Windows Docker笔记-Docker拉取镜像
  • 七大排序思想
  • intra-mart实现简易登录页面笔记
  • SpringBoot整合RocketMQ
  • 深入理解 YUV Planar 和色度二次采样 —— 视频处理的核心技术
  • 项目顺利交付,几个关键阶段
  • 第七天 开始学习ArkTS基础,理解声明式UI编程思想
  • windows C++ Fiber (协程)
  • 游戏引擎学习第89天
  • 2025新鲜出炉--前端面试题(一)
  • 教程 | i.MX RT1180 ECAT_digital_io DEMO 搭建(一)
  • Pyecharts系列课程04——折线图/面积图(Line)
  • 变压器-000000
  • 凝思60重置密码
  • linux——网络计算机{序列化及反序列化(JSON)(ifdef的用法)}
  • 【教程】docker升级镜像
  • 迅为RK3568开发板篇OpenHarmony实操HDF驱动控制LED-编写应用APP
  • python代码
  • React 打印插件 -- react-to-print
  • 探索C语言简易计算器程序的实现与优化
  • 深入了解 MySQL:从基础到高级特性
  • OSPF基础(1):工作过程、状态机、更新
  • 工业相机如何获得更好的图像色彩