当前位置: 首页 > news >正文

二维前缀和:高效求解矩阵区域和问题

在处理二维矩阵时,频繁计算某一子矩阵的和是一个常见的操作。传统的做法是直接遍历该子矩阵,时间复杂度较高。当矩阵非常大且有大量的查询时,直接计算将变得低效。为了提高效率,我们可以通过 二维前缀和 技巧在常数时间内解决这个问题。

本文将通过一个具体的 Java 实现,介绍如何使用二维前缀和优化子矩阵求和问题。

关键是二维前缀和数组的构造,以及求解区域和的代码部分

测试链接:https://leetcode.cn/problems/range-sum-query-2d-immutable/

一、前缀和的概念

前缀和是解决区间和问题的经典技巧。在一维数组中,前缀和数组 prefixSum 用于存储从数组开头到当前位置的累加和,这样我们可以在 O(1) 时间内查询任意区间 [l, r] 的和。

二维前缀和的思想类似,它在二维矩阵上扩展了前缀和的概念。给定一个 m x n 的矩阵 matrix,二维前缀和数组 sum 中的元素 sum[i][j] 表示从左上角 (0, 0)(i-1, j-1) 的所有矩阵元素的和。通过构造这个前缀和数组,我们能够在常数时间内查询任意子矩阵的元素和。

二、二维前缀和的计算

2.1 二维前缀和的构建

对于一个 m x n 的矩阵 matrix,我们定义一个同样大小的前缀和数组 sum,其中 sum[i][j] 表示从 (0, 0)(i-1, j-1) 的矩阵元素和。构造 sum[i][j] 的公式如下:

sum[i][j] = matrix[i-1][j-1] + sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1]
  • matrix[i-1][j-1]:当前矩阵元素。
  • sum[i-1][j]:上方区域的和。
  • sum[i][j-1]:左侧区域的和。
  • sum[i-1][j-1]:左上角区域重复计算的部分,需要减去。

这样通过累加计算每个位置的前缀和,最终可以在常数时间内求出任意子矩阵的和。

2.2 子矩阵和的查询

通过上述方式构造的二维前缀和数组,可以快速计算任意子矩阵的元素和。给定一个矩阵区域的左上角 (row1, col1) 和右下角 (row2, col2),其和可以通过以下公式计算:

sumRegion(row1, col1, row2, col2) = sum[row2+1][col2+1]- sum[row1][col2+1]- sum[row2+1][col1]+ sum[row1][col1]

三、Java 实现

以下是使用二维前缀和优化矩阵区域和查询的 Java 实现。我们将使用 NumMatrix 类来实现:

public class NumMatrix {private int[][] sum;// 构造函数:计算二维前缀和public NumMatrix(int[][] matrix) {int n = matrix.length;int m = matrix[0].length;sum = new int[n + 1][m + 1];  // 创建一个多出一行一列的前缀和数组// 填充前缀和数组for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {sum[i][j] = matrix[i - 1][j - 1] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];}}}// 查询子矩阵的和public int sumRegion(int row1, int col1, int row2, int col2) {row1++;col1++;row2++;col2++;return sum[row2][col2] - sum[row1 - 1][col2] - sum[row2][col1 - 1] + sum[row1 - 1][col1 - 1];}public static void main(String[] args) {// 示例矩阵int[][] matrix = {{3, 2, 1, 4},{1, 5, 3, 2},{4, 2, 2, 1},{7, 4, 3, 5}};// 创建 NumMatrix 对象NumMatrix numMatrix = new NumMatrix(matrix);// 查询子矩阵 (1,1) 到 (2,2) 的和System.out.println(numMatrix.sumRegion(1, 1, 2, 2));  // 输出:15}
}
3.1 代码分析
  1. 构造函数NumMatrix(int[][] matrix) 用来构造二维前缀和数组 sum。首先,构造一个大小为 (n+1) x (m+1) 的数组,额外的行和列用于处理边界问题。然后通过双重循环填充 sum 数组,利用之前的公式逐步计算前缀和。

  2. sumRegion 方法sumRegion(int row1, int col1, int row2, int col2) 用于查询子矩阵 (row1, col1)(row2, col2) 的和。通过前缀和的计算公式,能够在常数时间内返回结果。

  3. 主函数:在 main 方法中,我们定义了一个 matrix,并创建了 NumMatrix 对象来处理前缀和的计算。然后调用 sumRegion 方法查询从 (1,1)(2,2) 的子矩阵和,输出为 15

四、时间复杂度

  • 前缀和数组的构造:构造二维前缀和数组的时间复杂度是 O(m * n),其中 mn 分别是矩阵的行数和列数。
  • 查询子矩阵和:查询的时间复杂度是 O(1),因为我们只需要做常数次的数组访问和加减操作。

五、应用场景

二维前缀和特别适用于以下场景:

  1. 静态矩阵区域求和:如果我们需要对矩阵中多个子矩阵进行求和,二维前缀和能够显著减少查询时间。
  2. 优化算法中的区间求和:在一些动态规划或分治算法中,二维前缀和可以高效地处理二维区间和查询。
http://www.lryc.cn/news/531057.html

相关文章:

  • 鸢尾花书《编程不难》02---学习书本里面的三个案例
  • MySQL(高级特性篇) 13 章——事务基础知识
  • CSS Display属性完全指南
  • 【机器学习篇】K-Means 算法详解:从理论到实践的全面解析
  • IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)
  • 内核定时器3-用户空间定时器
  • C++ 字面量深度解析:从基础到实战进阶
  • 论文paper(更新...)
  • 变形金刚多元宇宙
  • HTTP协议的无状态和无连接
  • ASP.NET代码审计 SQL注入篇(简单记录)
  • 毫秒级响应的VoIP中的系统组合推荐
  • w186格障碍诊断系统spring boot设计与实现
  • shell -c
  • (笔记+作业)书生大模型实战营春节卷王班---L1G3000 浦语提示词工程实践
  • 文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?
  • Chapter2 Amplifiers, Source followers Cascodes
  • 从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)
  • Android学习19 -- 手搓App
  • pytorch基于GloVe实现的词嵌入
  • SpringCloud篇 微服务架构
  • 背包问题和单调栈
  • Java | CompletableFuture详解
  • 【背包问题】二维费用的背包问题
  • Golang 并发机制-5:详解syn包同步原语
  • 实验六 项目二 简易信号发生器的设计与实现 (HEU)
  • 如何用微信小程序写春联
  • LabVIEW无人机航线控制系统
  • C++哈希表深度解析:从原理到实现,全面掌握高效键值对存储
  • Vue.js组件开发-实现字母向上浮动