当前位置: 首页 > news >正文

【机器学习篇】K-Means 算法详解:从理论到实践的全面解析

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:极星会首批签约作者

文章目录

    • 摘要
    • 引言
    • K-Means 算法原理
    • K-Means 算法的使用步骤
    • 使用 K-Means 进行聚类的实现
      • 代码示例
      • 代码解释
    • QA 环节
    • 总结
    • 未来展望
    • 参考资料

摘要

K-Means 是一种广泛应用的聚类算法,用于将数据集分组为 K 个簇。由于其简单易懂和高效的计算性能,K-Means 被广泛应用于各种数据分析任务中。本文将详细讲解 K-Means 的基本算法原理,使用步骤,并通过代码示例展示其在 Python 中的实现,帮助读者更好地理解和应用该算法。

引言

在机器学习领域,聚类是无监督学习中的一种重要方法。K-Means 聚类算法因其简单、高效且易于实现,成为了最受欢迎的聚类算法之一。然而,对于许多初学者而言,K-Means 的工作原理常常难以理解。本文将从基础的概念讲起,逐步带你理解 K-Means 算法,并通过具体的代码示例展示如何在实际项目中使用它进行聚类分析。

K-Means 算法原理

K-Means 算法的核心思想是将数据集分为 K 个簇,每个簇由与簇中心最接近的点组成。算法的步骤如下:

  1. 初始化:随机选择 K 个数据点作为初始簇中心。
  2. 分配阶段:将每个数据点分配到距离其最近的簇中心。
  3. 更新阶段:计算每个簇的新的簇中心(即簇内所有点的平均值)。
  4. 重复:重复步骤 2 和 3,直到簇中心不再变化或达到指定的迭代次数。

K-Means 算法的使用步骤

  1. 选择 K 值:首先确定簇的数量 K。可以通过领域知识、经验、肘部法则(Elbow Method)等方法来选择最优的 K 值。
  2. 数据标准化:确保数据的每个特征具有相同的尺度。标准化可以通过减去均值、除以标准差等方法完成。
  3. 运行 K-Means 算法:使用算法实现将数据聚类为 K 个簇。
  4. 结果评估:使用聚类的内部度量(如 SSE 或 Silhouette Score)来评估聚类效果。

使用 K-Means 进行聚类的实现

以下是一个简单的 K-Means 聚类算法实现,使用了 Python 的 sklearn 库。

代码示例

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler# 生成一个示例数据集
X, y = make_blobs(n_samples=300, centers=4, cluster_std=1.0, random_state=42)# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 使用 KMeans 聚类
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(X_scaled)# 获取聚类的标签
y_kmeans = kmeans.predict(X_scaled)# 可视化聚类结果
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=y_kmeans, s=50, cmap='viridis')# 绘制簇的中心
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5, marker='X')
plt.title("K-Means 聚类结果")
plt.xlabel("特征 1")
plt.ylabel("特征 2")
plt.show()

代码解释

  1. 数据生成:使用 make_blobs 函数生成一个有 4 个簇的数据集,适合用来演示 K-Means 聚类。
  2. 标准化:使用 StandardScaler 对数据进行标准化处理,确保每个特征在相同的尺度上,避免某些特征的影响过大。
  3. KMeans 聚类:使用 KMeans 类初始化模型,指定簇的数量为 4,并将数据拟合到模型中。
  4. 可视化结果:使用 matplotlib 绘制聚类结果,并显示簇的中心。

QA 环节

Q1: 如何选择 K 的值?
A1: 常用的方法有肘部法则(Elbow Method)和轮廓系数(Silhouette Score)。肘部法则通过绘制不同 K 值的误差平方和(SSE)图,选择 “肘部” 处的 K 值。轮廓系数则衡量聚类的紧密性和分离度,值越高越好。

Q2: K-Means 聚类的局限性有哪些?
A2: K-Means 对初始簇中心选择敏感,容易受到噪声和异常值的影响。同时,K-Means 假设簇是球形的,不适合处理非球形簇或密度不均匀的情况。

总结

K-Means 算法是一个简单且高效的聚类方法,适用于各种数据分析任务。通过本文的讲解与示例,读者应该能够掌握 K-Means 的基本原理,并通过 Python 实现聚类分析。K-Means 的优势在于其易于理解和实现,但也存在一些局限性,读者可以在实际应用中结合其他算法一起使用。

未来展望

  • K-Means 改进:研究更先进的聚类算法,如 DBSCAN 和 Mean Shift,以应对 K-Means 的局限性。
  • 大数据处理:如何在大规模数据集上高效实现 K-Means 聚类,并结合分布式计算框架如 Spark。
  • 自动选择 K 值:发展更多自动化方法来选择最优的 K 值,减少人工干预。

参考资料

  1. K-Means 聚类算法 - Wikipedia
  2. Scikit-learn 官方文档
  3. 机器学习实战
http://www.lryc.cn/news/531053.html

相关文章:

  • IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)
  • 内核定时器3-用户空间定时器
  • C++ 字面量深度解析:从基础到实战进阶
  • 论文paper(更新...)
  • 变形金刚多元宇宙
  • HTTP协议的无状态和无连接
  • ASP.NET代码审计 SQL注入篇(简单记录)
  • 毫秒级响应的VoIP中的系统组合推荐
  • w186格障碍诊断系统spring boot设计与实现
  • shell -c
  • (笔记+作业)书生大模型实战营春节卷王班---L1G3000 浦语提示词工程实践
  • 文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?
  • Chapter2 Amplifiers, Source followers Cascodes
  • 从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)
  • Android学习19 -- 手搓App
  • pytorch基于GloVe实现的词嵌入
  • SpringCloud篇 微服务架构
  • 背包问题和单调栈
  • Java | CompletableFuture详解
  • 【背包问题】二维费用的背包问题
  • Golang 并发机制-5:详解syn包同步原语
  • 实验六 项目二 简易信号发生器的设计与实现 (HEU)
  • 如何用微信小程序写春联
  • LabVIEW无人机航线控制系统
  • C++哈希表深度解析:从原理到实现,全面掌握高效键值对存储
  • Vue.js组件开发-实现字母向上浮动
  • 自研有限元软件与ANSYS精度对比-Bar2D2Node二维杆单元模型-四连杆实例
  • 04树 + 堆 + 优先队列 + 图(D1_树(D11_伸展树))
  • c语言练习题【数据类型、递归、双向链表快速排序】
  • SliverAppBar的功能和用法