当前位置: 首页 > news >正文

【C++动态规划 状态压缩】2597. 美丽子集的数目|2033

本文涉及知识点

C++动态规划

LeetCode2597. 美丽子集的数目

给你一个由正整数组成的数组 nums 和一个 正 整数 k 。
如果 nums 的子集中,任意两个整数的绝对差均不等于 k ,则认为该子数组是一个 美丽 子集。
返回数组 nums 中 非空 且 美丽 的子集数目。
nums 的子集定义为:可以经由 nums 删除某些元素(也可能不删除)得到的一个数组。只有在删除元素时选择的索引不同的情况下,两个子集才会被视作是不同的子集。
示例 1:
输入:nums = [2,4,6], k = 2
输出:4
解释:数组 nums 中的美丽子集有:[2], [4], [6], [2, 6] 。
可以证明数组 [2,4,6] 中只存在 4 个美丽子集。
示例 2:
输入:nums = [1], k = 1
输出:1
解释:数组 nums 中的美丽数组有:[1] 。
可以证明数组 [1] 中只存在 1 个美丽子集。
提示:
1 <= nums.length <= 20
1 <= nums[i], k <= 1000

动态规划+状态压缩

动态规划的状态表示

dp[mask] 表示(1<<j)&mask的数字已经使用是否是完美子集。空间复杂度:O(2nn)。

动态规划的填表顺序

mask从0到大

动态规划的转移方程

v[i]的如下位为1,其它为0:a,第i位。 b,第j位 abs(nums[j]-nums[i])==k。
!dp[mask]忽略。
if(v[i]&mask)则忽略i。
dp[mask|(1<<i)] = true
单个状态时间复杂度:O(n),总时间复杂度:O(2nn)

动态规划的初始化

dp[0]=true,其它全为false。

动态规划的返回值

dp中true的数量-1。

代码

核心代码

class Solution {public:int beautifulSubsets(vector<int>& nums, int k) {const int N = nums.size();const int MC = 1 << N;vector<int> v(N);for (int i = 0; i < N; i++) {v[i] = 1 << i;for (int j = 0; j < N; j++) {if (abs(nums[i] - nums[j]) == k) {v[i] |= (1 << j);}}}vector<bool> dp(MC);for (int i = 0; i < N; i++) {dp[1 << i] = true;}for (int i = 0; i < MC; i++) {if (!dp[i])continue;for (int j = 0; j < N; j++) {if (i & v[j])continue;dp[i | (1 << j)] = true;}}const int ans = count(dp.begin(), dp.end(), true);return ans;}};

单元测试

	int k;TEST_METHOD(TestMethod11){nums = { 2,4,6 },k=2;auto res = Solution().beautifulSubsets(nums, k);AssertEx(4, res);}TEST_METHOD(TestMethod12){nums = { 1 }, k = 1;auto res = Solution().beautifulSubsets(nums, k);AssertEx(1, res);}

优化

v[i] 改成v[i<<i]
枚举后续状态:
j1= i&-i j2 = i-j1
如果v[j1]&j2 则i是非法状态。否则dp[i] = dp[j2]

class Solution {public:int beautifulSubsets(vector<int>& nums, int k) {const int N = nums.size();const int MC = 1 << N;vector<int> v(MC);for (int i = 0; i < N; i++) {	for (int j = 0; j < N; j++) {if (abs(nums[i] - nums[j]) == k) {v[1<<i] |= (1 << j);}}}vector<bool> dp(MC);for (int i = 0; i < N; i++) {dp[1 << i] = true;}for (int i = 1; i < MC; i++) {const int j1 = i & -i;const int j2 = i - j1;if (j2 & v[j1])continue;dp[i] = (0==j2)||dp[j2];}const int ans = count(dp.begin(), dp.end(), true);return ans;}};

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

http://www.lryc.cn/news/528682.html

相关文章:

  • 前端-Rollup
  • 20【变量的深度理解】
  • 大数据学习之Kafka消息队列、Spark分布式计算框架一
  • 基于Flask的旅游系统的设计与实现
  • “AI视频智能分析系统:让每一帧视频都充满智慧
  • 算法随笔_31:移动零
  • 改进候鸟优化算法之二:基于混沌映射的候鸟优化算法(MBO-CM)
  • 在Docker 容器中安装 Oracle 19c
  • 使用Avalonia UI实现DataGrid
  • MySQL中的读锁与写锁:概念与作用深度剖析
  • Dest1ny漏洞库:用友 U8 Cloud ReleaseRepMngAction SQL 注入漏洞(CNVD-2024-33023)
  • python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算
  • 【面试】【编程范式总结】面向对象编程(OOP)、函数式编程(FP)和响应式编程(RP)
  • 创建要素图层和表视图
  • 51单片机入门_01_单片机(MCU)概述(使用STC89C52芯片;使用到的硬件及课程安排)
  • 万物皆有联系:驼鸟和布什
  • 【最后203篇系列】007 使用APS搭建本地定时任务
  • go gin配置air
  • Java定时任务实现方案(五)——时间轮
  • 【事务管理】
  • Highcharts 柱形图:深入解析与最佳实践
  • js笔记(黑马程序员)
  • Mac m1,m2,m3芯片使用nvm安装node14报错
  • LeetCode:63. 不同路径 II
  • 安装zsh并美化
  • 读量子霸权18读后总结与感想兼导读
  • 统计学中的样本概率论中的样本
  • HTML 符号详解
  • 蓝桥杯练习日常|c/c++竞赛常用库函数(下)
  • Python vLLM 实战应用指南