当前位置: 首页 > news >正文

埃氏算法C++实现: 快速输出质数( 素数 )

目录

1.简介

算法原理

算法特点

应用场景

2.一般求素数方法

3.埃氏算法求素数

3.1.无动态分配

3.2.有动态分配


1.简介

埃氏算法(Eratosthenes Sieve)‌,全称为埃拉托斯特尼筛法,是一种由古希腊数学家埃拉托斯特尼在公元前3世纪提出的古老而经典的算法,用于计算一定范围内的素数。其基本思想是通过从小到大遍历每个数字,并将其所有倍数标记为非质数,从而逐步排除所有非质数,最终得到所有的素数。‌

算法原理

埃氏筛法的基本原理是:要得到自然数n以内的全部素数,必须把不大于√n的所有素数的倍数剔除,剩下的就是素数。具体步骤如下:

  1. 初始化:创建一个布尔类型的数组(或列表),用于表示范围内的所有数字,初始时将所有元素标记为“true”,表示都是素数(或待检定的数)。
  2. 遍历与筛选:从2开始遍历数组中的每个数。如果当前数字被标记为素数(即为“true”),则进行下一步筛选操作;否则,跳过该数字。对于当前素数p,从p的平方开始,将p的倍数(如2p、3p、4p等)标记为非质数(即为“false”),因为p的所有小于p平方的倍数在之前的步骤中已经被更小的素数筛选过了。
  3. 重复操作:继续向后遍历,重复步骤2的筛选过程,直到遍历完整个范围。
  4. 输出结果:遍历结束后,所有未被标记为非质数(仍为“true”)的数字都是素数,将其输出即可。

算法特点

  1. 简单直观‌:埃氏筛法的原理简单易懂,实现起来也较为直接。
  2. 高效性‌:虽然算法的时间复杂度为O(nloglogn),但在实际应用中,它仍然是寻找一定范围内素数的高效方法之一。
  3. 历史悠久‌:作为一种古老的算法,埃氏筛法在数学史上占有重要地位,是素数研究的基础工具之一。

应用场景

埃氏筛法广泛应用于数论、密码学、计算机科学等领域,特别是在需要快速生成大量素数时,其高效性得到了充分体现。例如,在密码学中的RSA算法中,就需要生成大量的素数作为密钥的基础。

2.一般求素数方法

#include <iostream>
#include <cmath>using namespace std;bool is_prime(int num) {if (num <= 1) return false;if (num == 2) return true; // 2 is the only even prime numberif (num % 2 == 0) return false; // other even numbers are not primesint sqrt_num = static_cast<int>(sqrt(num));for (int i = 3; i <= sqrt_num; i += 2) {if (num % i == 0) return false;}return true;
}void find_primes_up_to(int n, int* primes, int& prime_count) {prime_count = 0;for (int i = 2; i <= n; ++i) {if (is_prime(i)) {primes[prime_count++] = i;}}
}int main() {int n;cout << "Enter a number: ";cin >> n;// Assuming the maximum number of primes is n/2 (an overestimate)int* primes = new int[n / 2];int prime_count;find_primes_up_to(n, primes, prime_count);cout << "Prime numbers up to " << n << " are: ";for (int i = 0; i < prime_count; ++i) {cout << primes[i] << " ";}cout << endl;delete[] primes; // Free the allocated memoryreturn 0;
}

3.埃氏算法求素数

3.1.无动态分配

#include <iostream>
#include <cmath>using namespace std;bool is_prime(int num) {if (num <= 1) return false;if (num == 2) return true; // 2 is the only even prime numberif (num % 2 == 0) return false; // other even numbers are not primesint sqrt_num = static_cast<int>(sqrt(num));for (int i = 3; i <= sqrt_num; i += 2) {if (num % i == 0) return false;}return true;
}void find_primes_up_to(int n, int primes[], int& prime_count) {prime_count = 0;for (int i = 2; i <= n; ++i) {if (is_prime(i)) {primes[prime_count++] = i;}}
}int main() {int n;cout << "Enter a number: ";cin >> n;// Assuming the maximum number of primes is n/2 (an overestimate)int primes[n / 2];int prime_count;find_primes_up_to(n, primes, prime_count);cout << "Prime numbers up to " << n << " are: ";for (int i = 0; i < prime_count; ++i) {cout << primes[i] << " ";}cout << endl;return 0;
}

3.2.有动态分配

#include <iostream>
#include <cmath>using namespace std;bool is_prime(int num) {if (num <= 1) return false;if (num == 2) return true; // 2 is the only even prime numberif (num % 2 == 0) return false; // other even numbers are not primesint sqrt_num = static_cast<int>(sqrt(num));for (int i = 3; i <= sqrt_num; i += 2) {if (num % i == 0) return false;}return true;
}void find_primes_up_to(int n, int* primes, int& prime_count) {prime_count = 0;for (int i = 2; i <= n; ++i) {if (is_prime(i)) {primes[prime_count++] = i;}}
}int main() {int n;cout << "Enter a number: ";cin >> n;// Assuming the maximum number of primes is n/2 (an overestimate)int* primes = new int[n / 2];int prime_count;find_primes_up_to(n, primes, prime_count);cout << "Prime numbers up to " << n << " are: ";for (int i = 0; i < prime_count; ++i) {cout << primes[i] << " ";}cout << endl;delete[] primes; // Free the allocated memoryreturn 0;
}

http://www.lryc.cn/news/525547.html

相关文章:

  • 后端的config包中的常用配置
  • 基于亿坊PHP框架构建物联网解决方案的优势分析!
  • IoTDB结合Mybatis使用示例(增删查改自定义sql等)
  • skynet 源码阅读 -- 启动主流程
  • OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯
  • UDP 广播组播点播的区别及联系
  • STM32补充——IAP
  • Jetson Xavier NX (ARM) 使用 PyTorch 安装 Open3D-ML 指南
  • 【C++高并发服务器WebServer】-1:Linux中父子进程fork创建及关系、GDB多进程调试
  • C语言数组详解:从基础到进阶的全面解析
  • docker的前世今生
  • python实现施瓦茨-克里斯托费尔【全网首个】根据用户输入推测函数
  • c语言中的数组(上)
  • Unity3D仿星露谷物语开发25之创建时钟界面
  • 数据结构测试题1
  • android wifi AsyncChannel(WifiManager和WifiP2pManager)
  • 【Image Captioning】DynRefer
  • Midjourney基础-常用修饰词+权重的用法大全
  • 没有屋檐的房子-023粪堆旁边的舞蹈
  • 基于Docker的Kafka分布式集群
  • 【博客之星】年度总结:在云影与墨香中探寻成长的足迹
  • SpringBoot的Swagger配置
  • machine learning knn算法之使用KNN对鸢尾花数据集进行分类
  • C语言练习(16)
  • SOAFEE 技术研讨会:汽车软件定义与自动驾驶技术探讨
  • R语言学习笔记之开发环境配置
  • 多版本并发控制:MVCC的作用和基本原理
  • ubuntu18.04安装nvm管理本机node和npm
  • 【数据结构进阶】红黑树超详解 + 实现(附源码)
  • leetcode_3092. 最高频率的 ID