当前位置: 首页 > news >正文

python学opencv|读取图像(三十九 )阈值处理Otsu方法

【1】引言

前序学习了5种阈值处理方法,包括(反)阈值处理、(反)零值处理和截断处理,还学习了一种自适应处理方法,相关文章链接为:

python学opencv|读取图像(三十三)阈值处理-灰度图像-CSDN博客

python学opencv|读取图像(三十四)阈值处理-彩色图像-CSDN博客

python学opencv|读取图像(三十五)反阈值处理-CSDN博客

python学opencv|读取图像(三十六)(反)零值处理-CSDN博客

python学opencv|读取图像(三十七 )截断处理-CSDN博客

python学opencv|读取图像(三十八 )阈值自适应处理-CSDN博客

在上述所有文章中,阈值开关都是自己随机设置的,因此,实际效果可能未必是最佳。

如果有一种方法,可以让函数自动选取最佳阈值开关,那就能时刻获得最佳的阈值处理效果,这个方法就是:“阈值处理参数+Otsu”。

【2】官网教程

Otsu方法的说明,点击下方链接可以直达:

OpenCV: Miscellaneous Image Transformations

官网页面关于Otsu方法的说明为:

图1

实际上,使用Otsu方法时,必须配合前述5种阈值处理方法一起进行阈值调整。因为Otsu方法本身是来辅助选择最优的阈值开关,所以阈值处理方法还需要保留。

在下述官网示例说明中,我们会看到这一解释:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像# 读取图片-函数转化灰度图
src1 = cv.imread('srcf.png') #读取图像
dst1=cv.cvtColor(src1,cv.COLOR_BGR2GRAY) #转化为灰度图dstt=np.hstack((dst,dst1)) #两种灰度图拼接在一起

OpenCV: Image Thresholding

图2

【3】代码测试

首先引入必要的模块和原图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像# 读取图片-函数转化灰度图
src1 = cv.imread('srcf.png') #读取图像
dst1=cv.cvtColor(src1,cv.COLOR_BGR2GRAY) #转化为灰度图dstt=np.hstack((dst,dst1)) #两种灰度图拼接在一起

然后进行Otsu处理,为进行对比,也做了零值处理:

#阈值处理
t2,dst2=cv.threshold(src,58,158,cv.THRESH_TOZERO) #零值-阈值开关58,阈值上限158
t3,dst3=cv.threshold(src,0,255,cv.THRESH_TOZERO+cv.THRESH_OTSU) #零值+OTSU
dsto=np.hstack((dst2,dst3)) #两种阈值处理图拼接在一起

之后显示图像和保存图像:

# 在屏幕展示效果
cv.imshow('srcdstt', dstt)  # 在屏幕展示效果
cv.imshow('srcdsto', dsto)  # 在屏幕展示效果#显示BGR值
print("dst1像素数为[100,100]位置处的BGR=", dst1[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst3像素数为[100,100]位置处的BGR=", dst3[100, 100])  # 获取像素数为[100,100]位置处的BGR#保存图像
cv.imwrite('srcf-dstt.png', dstt)  # 保存图像
cv.imwrite('srcf-dst2.png', dst3)  # 保存图像
cv.imwrite('srcf-dsto.png', dsto)  # 保存图像cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

此处使用的原始图像为:

图3

转化后的灰度图为:

图4 灰度图

进行单纯零值处理和零值处理+OTSU处理后的图像为:

图5 单纯零值处理和零值处理+OTSU处理

由图5可见,右侧为零值处理+OTSU处理后的图像,更趋向于突出轮廓边线。

由于OTSU处理图像会自动选择最佳阈值开关,所以我们输出了特定位置的BGR值:

图6 特定像素点BGR值

dst1为转后的原始灰度图,dst2为单纯零值处理图,dst3为零值处理+OTSU处理后的图像。

由图6可见,零值处理+OTSU处理后的图像,自动选择的阈值开关也没有超过156,所以这两个图在像素点[100][100]处的BGR值完全相等。

【4】细节说明

使用Otsu方法的时候,依然调用cv2.threshold()函数,虽然此时Otsu会自动选择阈值开关,但仍然需要在阈值开关的位置写"0"。

图7 提前设定阈值开关为0

【5】总结

掌握了python+opencv实现Otsu自动调整阈值开关的操作技巧。

 

 

http://www.lryc.cn/news/525131.html

相关文章:

  • GBase8c aes_encrypt和aes_decrypt函数
  • 【2024年华为OD机试】(B卷,100分)- 数据分类 (Java JS PythonC/C++)
  • 机器学习 vs 深度学习
  • flutter_学习记录_00_环境搭建
  • SpringBoot如何自定义Starter ?
  • 前沿技术对比:大模型技术为什么发展远快于区块链技术,中英对照解释
  • WordPress果果对象存储插件
  • elk 安装
  • Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
  • OpenCV相机标定与3D重建(63)校正图像的畸变函数undistort()的使用
  • 用 Java 发送 HTML 内容并带附件的电子邮件
  • 【Day24 LeetCode】贪心Ⅱ
  • vue3+elementPlus之后台管理系统(从0到1)(day3-管理员管理)
  • 上位机知识篇---ROS2命令行命令静态链接库动态链接库
  • 2025/1/21 学习Vue的第四天
  • 云计算、AI与国产化浪潮下DBA职业之路风云变幻,如何谋破局启新途?
  • Linux内核编程(二十一)USB驱动开发-键盘驱动
  • 模拟算法习题篇
  • 蓝桥杯真题 - 翻转 - 题解
  • IP属地与视频定位位置不一致:现象解析与影响探讨
  • 管道符、重定向与环境变量
  • 可扩展性设计架构模式——开闭原则
  • 算法随笔_17: 回文数
  • 计算机的错误计算(二百一十九)
  • React进阶之高阶组件HOC、react hooks、自定义hooks
  • 【Pytest】基础到高级功能的理解使用
  • RHCE实验详解
  • 备赛蓝桥杯之第十五届职业院校组省赛第二题:分享点滴
  • MyBatis 注解开发详解
  • Kivy App开发之UX控件VideoPlayer视频播放