当前位置: 首页 > news >正文

强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Transformer-LSTM+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab完整源码和数据)
Transformer-LSTM模型的架构:输入层:多个变量作为输入,形成一个多维输入张量。Transformer编码器:该编码器由多个Transformer编码器层组成,每个编码器层包含多头注意力机制和前馈网络。编码器层用于学习变量之间的关系。LSTM层:在Transformer编码器之后,将输出序列输入到LSTM层中。LSTM层用于处理序列,记忆先前的状态,并生成隐藏状态序列。输出层:将LSTM层的隐藏状态序列输入到输出层,通过全连接层进行最终的预测。输出层的神经元个数通常与预测目标的维度相匹配。训练过程中,可以使用已知的输入序列和目标序列来计算预测误差,并使用反向传播算法来更新模型的参数。优化器可以使用常见的梯度下降方法,如Adam。
多目标优化是指在优化问题中同时考虑多个目标的优化过程。在多目标优化中,通常存在多个冲突的目标,即改善一个目标可能会导致另一个目标的恶化。因此,多目标优化的目标是找到一组解,这组解在多个目标下都是最优的,而不是仅仅优化单一目标。
2.先通过Transformer-LSTM封装因变量(y1 y2 y3 )与自变量(x1 x2 x3 x4 x5)代理模型,再通过nsga2寻找y极值(y1极大;y2 y3极小),并给出对应的x1 x2 x3 x4 x5Pareto解集。
3.data为数据集,5个输入特征,3个输出变量,NSGAII算法寻极值,求出极值时(max y1; min y2;min y3)的自变量x1,x2,x3,x4,x5。
4.main1.m为Transformer-LSTM主程序文件、main2.m为NSGAII多目标优化算法主程序文件,依次运行即可,其余为函数文件,无需运行。

在这里插入图片描述
5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。
6.适合工艺参数优化、工程设计优化等最优特征组合领域。

NSGA-II算法的基本思想与技术路线
1) 随机产生规模为N的初始种群Pt,经过非支配排序、 选择、 交叉和变异, 产生子代种群Qt, 并将两个种群联合在一起形成大小为2N的种群Rt;
2)进行快速非支配排序, 同时对每个非支配层中的个体进行拥挤度计算, 根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群Pt+1;
3) 通过遗传算法的基本操作产生新的子代种群Qt+1, 将Pt+1与Qt+1合并形成新的种群Rt, 重复以上操作, 直到满足程序结束的条件。
在这里插入图片描述
数据集

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!(Matlab)

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义结果存放模板
empty.position = [];        %输入变量存放
empty.cost = [];            %目标函数存放
empty.rank = [];            % 非支配排序等级
empty.domination = [];      %支配个体集合
empty.dominated = 0;        %支配个体数目
empty.crowdingdistance = [];%个体聚集距离
pop = repmat(empty, npop, 1);
%% 1、初始化种群
for i = 1 : npoppop(i).position = create_x(var);   %产生输入变量(个体)pop(i).cost = costfunction(pop(i).position);%计算目标函数
end
%% 2、构造非支配集
[pop,F] = nondominatedsort(pop);
%% 计算聚集距离
pop = calcrowdingdistance(pop,F);
%% 主程序(选择、交叉、变异)

参考资料

工艺参数优化、工程设计优化!GRNN神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化陪您跨年!RBF神经网络+NSGAII多目标优化算法(Matlab)
工艺参数优化、工程设计优化来袭!BP神经网络+NSGAII多目标优化算法(Matlab)

北大核心工艺参数优化!SAO-BP雪融算法优化BP神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化上新!Elman循环神经网络+NSGAII多目标优化算法(Matlab)

http://www.lryc.cn/news/522885.html

相关文章:

  • Flutter中的事件冒泡处理
  • 昇腾环境ppstreuct部署问题记录
  • 基于 Python 的财经数据接口库:AKShare
  • 电力场景红外测温图像绝缘套管分割数据集labelme格式2436张1类别
  • 数字艺术类专业人才供需数据获取和分析研究
  • Java中json的一点理解
  • Vue项目搭建教程超详细
  • 2025年01月蓝桥杯Scratch1月stema选拔赛真题—美丽的图形
  • 【React】插槽渲染机制
  • 计算机网络 | 什么是公网、私网、NAT?
  • 如何解决Outlook无法连接到服务器的问题
  • vue2 web 多标签输入框 elinput是否当前焦点
  • 32单片机综合应用案例——物联网(IoT)环境监测站(四)(内附详细代码讲解!!!)
  • LabVIEW与WPS文件格式的兼容性
  • 小结: 路由协议的演进和分类
  • OpenCV相机标定与3D重建(60)用于立体校正的函数stereoRectify()的使用
  • Android wifi列表中去自身的热点
  • Windows环境本地配置pyspark环境详细教程
  • 《自动驾驶与机器人中的SLAM技术》ch9:自动驾驶车辆的离线地图构建
  • IP属地会随着人的移动而改变吗
  • openharmony应用开发快速入门
  • USB3020任意波形发生器4路16位同步模拟量输出卡1MS/s频率 阿尔泰科技
  • 云消息队列 Kafka 版 V3 系列荣获信通院“云原生技术创新标杆案例”
  • linux下的NFS和FTP部署
  • JS Clipboard API
  • MySQL中大量数据优化方案
  • 重拾Python学习,先从把python删除开始。。。
  • centos 安全配置基线
  • 高级编程语言的基本语法在CPU的眼中是什么样的呢?
  • Redis 性能优化:多维度技术解析与实战策略