当前位置: 首页 > news >正文

MapReduce完整工作流程

1、mapreduce工作流程(终极版)

0. 任务提交

1. 拆-split逻辑切片--任务切分。 FileInputFormat--split切片计算工具 FileSplit--单个计算任务的数据范围。

2. 获得split信息和个数。

MapTask阶段

1. 读取split范围内的数据。k(偏移量)-v(行数据)

        关键API:TextInputFormat。

2. 循环调用mapper.map(k,v) 关键代码:

        while(xx.next){ mapper.map(k,v); }

3. mapper.map执行完毕后,输出k-v,调用k-v的分区计算

        Partitioner.getPartition(k,v,reduceTask数量)--分区号。

4. 将输出k-v{分区号},存入临时缓冲区。环形缓冲区。

         MapOutputBuffer--环形缓冲区。

5. 如果缓冲区写满80%(mapper代码执行完毕),触发spill溢写过程。

        ① 读取k-v{分区号},对溢写范围内的数据进行排序。

        ② 存放到本地磁盘文件中,产生分区内的溢写文件。

6. 溢写完毕后,产生多个溢写文件

        ① 将多个溢写文件合并成1个有序---归并排序。

        ② combiner(分区 合并 调用reducer--局部reduce操作)【如果开启】

结果: 每个MapTask执行完毕后本地磁盘,每个分区(目录)内只有一个文件。(Key有序)

ReduceTask阶段

1. 从各个MapTask节点下载对应分区的结果文件。

        MapTask(分区0文件)

        MapTask(分区0文件)→ ReduceTask-0

        MapTask(分区0文件)

2. merge操作

        ① 排序

        ② 按照key分组

        ③ 将key相同的多个value--->[v,v,v,v]

3. 循环调用Reducer.reduce方法处理数据

        while(xxx){ reducer.reduce(k,vs); }

4. reducer.reduce输出key-value,将数据写入HDFS中。

        TextOutputForamt 格式化数据的工具类

        FileOutputFormat 指定输出HDFS的路径位置。

整个过程简述:

任务提交,根据文件大小切分Split逻辑切片,一个逻辑切分会启动一个Maptesk任务,Maptask会循环读取block块上的数据输出key和value,然后进行分区计算将输出的k、v存入临时缓冲区,缓冲区写满80%后会产生溢写文件(多个),然后将不同分区的多个溢写文件合并为一个溢写文件作为该阶段的输出文件。通过网络传输进入reduceTesk阶段,将不同split逻辑切分中的相同的分区号文件进行合并为一个文件(merge操作),作为reduceeTesk的输入文件,循环调用Reducer.reduce方法执行任务,将数据写入HDFS中。

2、Spill溢写过程详解

发生在MapReduce过程中的排序:

第一次: MapTask阶段环形缓冲区开始spill溢写,缓冲区每次溢写,发生一轮排序。 快排排序

第二次: Maptask多次溢写产生的多个溢写文件(单个文件每部k有序),要做归并排序,maptask每个分区内,只保留1个文件(key有序) 归并排序

第三次: ReduceTask-0 汇总多个MapTask的(对应分区-0)结果文件,归并排序

3、Shuffle过程详解

简言:站在数据的角度来讲,数据从Mapper.map方法离开,一直到数据进入Reducer.reduce方法,中间的过程。

Mapper阶段

2. 循环调用mapper.map(k,v) 关键代码:

        while(xx.next){ mapper.map(k,v); }

3. mapper.map执行完毕后,输出k-v,调用k-v的分区计算

        Partitioner.getPartition(k,v,reduceTask数量)--分区号。

4. 将输出k-v{分区号},存入临时缓冲区。环形缓冲区。

         MapOutputBuffer--环形缓冲区。

5. 如果缓冲区写满80%(mapper代码执行完毕),触发spill溢写过程。

        ① 读取k-v{分区号},对溢写范围内的数据进行排序。

        ② 存放到本地磁盘文件中,产生分区内的溢写文件。

ReduceTask阶段

1. 从各个MapTask节点下载对应分区的结果文件。

        MapTask(分区0文件)

        MapTask(分区0文件)→ ReduceTask-0

        MapTask(分区0文件)

2. merge操作

        ① 排序

        ② 按照key分组

        ③ 将key相同的多个value--->[v,v,v,v]

3. 循环调用Reducer.reduce方法处理数据

        while(xxx){ reducer.reduce(k,vs); }

http://www.lryc.cn/news/520131.html

相关文章:

  • 网络编程(1)
  • mysql中创建计算字段
  • 【算法】判断一个链表是否为回文结构
  • 计算机网络之---ICMP协议与Ping命令
  • 【硬件介绍】Type-C接口详解
  • 【Pandas】pandas Series rtruediv
  • 项目开发版本控制Git流程规范
  • STM32 : 波特率发生器
  • STM32 USB组合设备 MSC CDC
  • 继续以“实用”指导Pythonic编码(re通配表达式)(2024年终总结2)
  • Flutter使用BorderRadiusTween实现由矩形变成圆形的动画
  • VSCode 中的 launch.json 配置使用
  • 深度学习张量的秩、轴和形状
  • Redis有哪些常用应用场景?
  • vue3+ts+element-plus 输入框el-input设置背景颜色
  • Ubuntu 磁盘修复
  • 使用RSyslog将Nginx Access Log写入Kafka
  • 通过Apache、Nginx限制直接访问public下的静态文件
  • uniapp小程序中隐藏顶部导航栏和指定某页面去掉顶部导航栏小程序
  • Agile Scrum 敏捷开发方法
  • 【算法与数据结构】—— 回文问题
  • 用vscode写latex-1
  • 爬虫基础之爬取歌曲宝歌曲批量下载
  • GitLab CI/CD使用runner实现自动化部署前端Vue2 后端.Net 7 Zr.Admin项目
  • web前端第五次作业---制作菜单
  • 软件系统安全逆向分析-混淆对抗
  • HAMi + prometheus-k8s + grafana实现vgpu虚拟化监控
  • Java基于SSM框架的在线视频教育系统小程序【附源码、文档】
  • mysql本地安装和pycharm链接数据库操作
  • Unity编程与游戏开发-编程与游戏开发的关系