当前位置: 首页 > news >正文

【Pandas】pandas Series rtruediv

Pandas2.2 Series

Binary operator functions

方法描述
Series.add()用于对两个 Series 进行逐元素加法运算
Series.sub()用于对两个 Series 进行逐元素减法运算
Series.mul()用于对两个 Series 进行逐元素乘法运算
Series.div()用于对两个 Series 进行逐元素除法运算
Series.truediv()用于执行真除法(即浮点数除法)操作
Series.floordiv()用于执行地板除法(即整数除法)操作
Series.mod()用于执行逐元素的取模运算
Series.pow()用于执行逐元素的幂运算
Series.radd()用于执行反向逐元素加法运算
Series.rsub()用于执行反向逐元素减法运算
Series.rmul()用于执行反向逐元素乘法运算
Series.rdiv()用于执行反向逐元素除法运算
Series.rtruediv()用于执行反向逐元素的真除法(即浮点数除法)运算

pandas.Series.rtruediv

pandas.Series.rtruediv 是 Pandas 库中 Series 对象的一个方法,用于执行反向逐元素的真除法(即浮点数除法)运算。反向真除法运算意味着将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行真除法运算,但顺序是反向的。具体来说,s1.rtruediv(s2) 等价于 s2 / s1

主要特点
  • 逐元素真除法运算:对两个 Series 进行逐元素的真除法操作。
  • 自动对齐索引:如果两个 Series 的索引不匹配,rtruediv() 方法会自动对齐索引,并在缺失值处填充指定的值(默认为 NaN)。
  • 支持缺失值填充:可以通过 fill_value 参数指定缺失值的填充方式。
  • 支持广播操作:可以与标量进行真除法操作。
参数说明
  • other: 另一个 Series、标量或其他可迭代对象,用于执行除法运算。
  • level: 如果两个 Series 对象的索引是多重索引,则可以指定在哪个级别进行对齐。
  • fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用 fill_value 指定一个值来填充这些缺失值,从而避免产生 NaN 结果。
  • axis: 指定操作的轴,默认为 0。
返回值

返回一个新的 Series 对象,其中包含反向逐元素真除法运算的结果。

示例代码
示例1: 标量反向真除法
import pandas as pd# 创建一个 Series
series = pd.Series([1, 2, 3, 4])# 使用 rtruediv() 方法进行标量反向真除法
result = series.rtruediv(10)print("标量反向真除法结果:")
print(result)
运行结果
标量反向真除法结果:
0    10.000000
1     5.000000
2     3.333333
3     2.500000
dtype: float64
示例2: Series 反向真除法
import pandas as pd# 创建两个 Series
series1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
series2 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])# 使用 rtruediv() 方法进行 Series 反向真除法
result = series1.rtruediv(series2)print("Series 反向真除法结果:")
print(result)
运行结果
Series 反向真除法结果:
a    10.0
b    10.0
c    10.0
d    10.0
dtype: float64
示例3: 使用 fill_value 参数处理缺失值
import pandas as pd
import numpy as np# 创建两个索引不完全匹配的 Series
series1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
series2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])# 使用 rtruediv() 方法进行反向真除法,并使用 fill_value 参数填充缺失值
result = series1.rtruediv(series2, fill_value=1)print("使用 fill_value 参数的反向真除法结果:")
print(result)
运行结果
使用 fill_value 参数的反向真除法结果:
a    10.00
b    10.00
c    10.00
d     0.25
dtype: float64

在这个例子中,series2 没有索引 'd',因此在对齐时 series2['d'] 被视为缺失值,并用 fill_value 指定的值 1 来代替,从而计算出 0.25

示例4: 索引不匹配的反向真除法
import pandas as pd# 创建两个索引不完全匹配的 Series
series1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
series2 = pd.Series([10, 20, 30], index=['b', 'c', 'd'])# 使用 rtruediv() 方法进行反向真除法
result = series1.rtruediv(series2)print("索引不匹配的反向真除法结果:")
print(result)
运行结果
索引不匹配的反向真除法结果:
a         NaN
b    5.000000
c    6.666667
d    7.500000
dtype: float64

在这个例子中,series1series2 的索引不完全匹配,未对齐的索引位置结果为 NaN。

通过这些示例,可以看到 pandas.Series.rtruediv 方法在处理 Series 之间的反向逐元素真除法运算时的强大功能和灵活性。它支持自动对齐索引、缺失值填充和广播操作,使得数据处理更加灵活和高效。

http://www.lryc.cn/news/520125.html

相关文章:

  • 项目开发版本控制Git流程规范
  • STM32 : 波特率发生器
  • STM32 USB组合设备 MSC CDC
  • 继续以“实用”指导Pythonic编码(re通配表达式)(2024年终总结2)
  • Flutter使用BorderRadiusTween实现由矩形变成圆形的动画
  • VSCode 中的 launch.json 配置使用
  • 深度学习张量的秩、轴和形状
  • Redis有哪些常用应用场景?
  • vue3+ts+element-plus 输入框el-input设置背景颜色
  • Ubuntu 磁盘修复
  • 使用RSyslog将Nginx Access Log写入Kafka
  • 通过Apache、Nginx限制直接访问public下的静态文件
  • uniapp小程序中隐藏顶部导航栏和指定某页面去掉顶部导航栏小程序
  • Agile Scrum 敏捷开发方法
  • 【算法与数据结构】—— 回文问题
  • 用vscode写latex-1
  • 爬虫基础之爬取歌曲宝歌曲批量下载
  • GitLab CI/CD使用runner实现自动化部署前端Vue2 后端.Net 7 Zr.Admin项目
  • web前端第五次作业---制作菜单
  • 软件系统安全逆向分析-混淆对抗
  • HAMi + prometheus-k8s + grafana实现vgpu虚拟化监控
  • Java基于SSM框架的在线视频教育系统小程序【附源码、文档】
  • mysql本地安装和pycharm链接数据库操作
  • Unity编程与游戏开发-编程与游戏开发的关系
  • 2025年第三届“华数杯”国际赛A题解题思路与代码(Python版)
  • 针对服务器磁盘爆满,MySql数据库始终无法启动,怎么解决
  • [Android]service命令的使用
  • 【芯片封测学习专栏 -- Substrate | RDL Interposer | Si Interposer | 嵌入式硅桥(EMIB)详细介绍】
  • spring cloud注册nacos并从nacos上拉取配置文件,spring cloud不会自动读取bootstrap.yml文件
  • 【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)