当前位置: 首页 > news >正文

RK3588上CPU和GPU算力以及opencv resize的性能对比测试

RK3588上CPU和GPU算力以及opencv resize的性能对比测试

  • 一.背景
  • 二.小结
  • 三.相关链接
  • 四.操作步骤
    • 1.环境搭建
      • A.安装依赖
      • B.设置GPU为高性能模式
      • C.获取GPU信息
      • D.获取CPU信息
    • 2.调用OpenCL SDK获取GPU信息
    • 3.使用OpenCL API计算矩阵乘
    • 4.使用clpeak测试GPU的性能
    • 5.使用OpenBLAS测试CPU的算力
    • 6.分别用CPU与OpenCL测试opencv resize的性能
      • A.编译OpenCV支持OpenCL
      • B.运行OpenCV测试程序

一.背景

  • 希望对比RK3588上CPU和Mali-GPU的性能差异
  • Mali-GPU算力测试采用clpeak
  • CPU-FP32的性能测试采用Openblas(开启了NEON优化)
  • 分别用CPU和opencl测试opencv resize在不同算法下的性能:从32x32放大到8192x8192再缩放回32x32,循环100次

二.小结

  • GPU型号: Mali-LODX r0p0 Mali-G610 4 cores r0p0 0xA867
  • GPU FP32(clpeak): 441.95 GFLOPS
  • CPU FP32(openblas+neon): 53.68 GFLOPS
  • 插值方法:INTER_NEAREST CPU耗时(秒):3.01526 GPU耗时(秒):0.0672681
  • 插值方法:INTER_LINEAR CPU耗时(秒):5.3227 GPU耗时(秒):0.0189366
  • 插值方法:INTER_CUBIC CPU耗时(秒):8.22734 GPU耗时(秒):11.6337
  • 插值方法:INTER_AREA CPU耗时(秒):20.4999 GPU耗时(秒):27.3197
  • 插值方法:INTER_LANCZOS4 CPU耗时(秒):29.3602 GPU耗时(秒):43.9484

三.相关链接

  • opencv编译

四.操作步骤

1.环境搭建

A.安装依赖

mv /lib/aarch64-linux-gnu/libOpenCL.so.1 /lib/aarch64-linux-gnu/libOpenCL.so.1.bk
ln -s /usr/lib/aarch64-linux-gnu/libmali.so /lib/aarch64-linux-gnu/libOpenCL.so.1sudo apt install opencl-headers
sudo apt install ocl-icd-libopencl1
sudo apt install ocl-icd-opencl-dev
sudo apt install clinfo

B.设置GPU为高性能模式

echo performance> /sys/class/devfreq/fb000000.gpu/governor
echo performance> /sys/class/devfreq/fdab0000.npu/governor

C.获取GPU信息

cat /sys/class/misc/mali0/device/gpuinfo
clinfo

输出

Mali-G610 4 cores r0p0 0xA867Number of platforms                               1Platform Name                                   ARM PlatformPlatform Vendor                                 ARMPlatform Version                                OpenCL 2.1 v1.g6p0-01eac0.ba52c908d926792b8f5fe28f383a2b03Platform Profile                                FULL_PROFILEPlatform Extensions                             cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_3d_image_writes cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_fp16 cl_khr_icd cl_khr_egl_image cl_khr_image2d_from_buffer cl_khr_depth_images cl_khr_subgroups cl_khr_subgroup_extended_types cl_khr_subgroup_non_uniform_vote cl_khr_subgroup_ballot cl_khr_il_program cl_khr_priority_hints cl_khr_create_command_queue cl_khr_spirv_no_integer_wrap_decoration cl_khr_extended_versioning cl_khr_device_uuid cl_arm_core_id cl_arm_printf cl_arm_non_uniform_work_group_size cl_arm_import_memory cl_arm_import_memory_dma_buf cl_arm_import_memory_host cl_arm_integer_dot_product_int8 cl_arm_integer_dot_product_accumulate_int8 cl_arm_integer_dot_product_accumulate_saturate_int8 cl_arm_scheduling_controls cl_arm_controlled_kernel_termination cl_ext_cxx_for_openclPlatform Host timer resolution                  1nsPlatform Extensions function suffix             ARMPlatform Name                                   ARM Platform
Number of devices                                 1
arm_release_ver of this libmali is 'g6p0-01eac0', rk_so_ver is '6'.Device Name                                     Mali-LODX r0p0Device Vendor                                   ARMDevice Vendor ID                                0xa8670000Device Version                                  OpenCL 2.1 v1.g6p0-01eac0.ba52c908d926792b8f5fe28f383a2b03Driver Version                                  2.1Device OpenCL C Version                         OpenCL C 2.0 v1.g6p0-01eac0.ba52c908d926792b8f5fe28f383a2b03Device Type                                     GPUDevice Profile                                  FULL_PROFILEDevice Available                                YesCompiler Available                              YesLinker Available                                YesMax compute units                               4Max clock frequency                             1000MHzDevice Partition                                (core)Max number of sub-devices                     0Supported partition types                     NoneSupported affinity domains                    (n/a)Max work item dimensions                        3Max work item sizes                             1024x1024x1024Max work group size                             1024Preferred work group size multiple              16Max sub-groups per work group                   64Preferred / native vector sizeschar                                                16 / 4short                                                8 / 2int                                                  4 / 1long                                                 2 / 1half                                                 8 / 2        (cl_khr_fp16)float                                                4 / 1double                                               0 / 0        (n/a)Half-precision Floating-point support           (cl_khr_fp16)Denormals                                     YesInfinity and NANs                             YesRound to nearest                              YesRound to zero                                 YesRound to infinity                             YesIEEE754-2008 fused multiply-add               YesSupport is emulated in software               NoSingle-precision Floating-point support         (core)Denormals                                     YesInfinity and NANs                             YesRound to nearest                              YesRound to zero                                 YesRound to infinity                             YesIEEE754-2008 fused multiply-add               YesSupport is emulated in software               NoCorrectly-rounded divide and sqrt operations  NoDouble-precision Floating-point support         (n/a)Address bits                                    64, Little-EndianGlobal memory size                              16643870720 (15.5GiB)Error Correction support                        NoMax memory allocation                           16643870720 (15.5GiB)Unified memory for Host and Device              YesShared Virtual Memory (SVM) capabilities        (core)Coarse-grained buffer sharing                 YesFine-grained buffer sharing                   NoFine-grained system sharing                   NoAtomics                                       NoMinimum alignment for any data type             128 bytesAlignment of base address                       1024 bits (128 bytes)Preferred alignment for atomicsSVM                                           0 bytesGlobal                                        0 bytesLocal                                         0 bytesMax size for global variable                    65536 (64KiB)Preferred total size of global vars             0Global Memory cache type                        Read/WriteGlobal Memory cache size                        1048576 (1024KiB)Global Memory cache line size                   64 bytesImage support                                   YesMax number of samplers per kernel             16Max size for 1D images from buffer            65536 pixelsMax 1D or 2D image array size                 2048 imagesBase address alignment for 2D image buffers   32 bytesPitch alignment for 2D image buffers          64 pixelsMax 2D image size                             65536x65536 pixelsMax 3D image size                             65536x65536x65536 pixelsMax number of read image args                 128Max number of write image args                64Max number of read/write image args           64Max number of pipe args                         16Max active pipe reservations                    1Max pipe packet size                            1024Local memory type                               GlobalLocal memory size                               32768 (32KiB)Max number of constant args                     128Max constant buffer size                        16643870720 (15.5GiB)Max size of kernel argument                     1024Queue properties (on host)Out-of-order execution                        YesProfiling                                     YesQueue properties (on device)Out-of-order execution                        YesProfiling                                     YesPreferred size                                2097152 (2MiB)Max size                                      16777216 (16MiB)Max queues on device                            1Max events on device                            1024Prefer user sync for interop                    NoProfiling timer resolution                      1000nsExecution capabilitiesRun OpenCL kernels                            YesRun native kernels                            NoSub-group independent forward progress        YesIL version                                    SPIR-V_1.0SPIR versions                                 <printDeviceInfo:161: get CL_DEVICE_SPIR_VERSIONS size : error -30>printf() buffer size                            1048576 (1024KiB)Built-in kernels                                (n/a)Device Extensions                               cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_3d_image_writes cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_fp16 cl_khr_icd cl_khr_egl_image cl_khr_image2d_from_buffer cl_khr_depth_images cl_khr_subgroups cl_khr_subgroup_extended_types cl_khr_subgroup_non_uniform_vote cl_khr_subgroup_ballot cl_khr_il_program cl_khr_priority_hints cl_khr_create_command_queue cl_khr_spirv_no_integer_wrap_decoration cl_khr_extended_versioning cl_khr_device_uuid cl_arm_core_id cl_arm_printf cl_arm_non_uniform_work_group_size cl_arm_import_memory cl_arm_import_memory_dma_buf cl_arm_import_memory_host cl_arm_integer_dot_product_int8 cl_arm_integer_dot_product_accumulate_int8 cl_arm_integer_dot_product_accumulate_saturate_int8 cl_arm_scheduling_controls cl_arm_controlled_kernel_termination cl_ext_cxx_for_openclNULL platform behaviorclGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...)  ARM PlatformclGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...)   Success [ARM]clCreateContext(NULL, ...) [default]            Success [ARM]clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT)  Success (1)Platform Name                                 ARM PlatformDevice Name                                   Mali-LODX r0p0clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU)  No devices found in platformclCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU)  Success (1)Platform Name                                 ARM PlatformDevice Name                                   Mali-LODX r0p0clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR)  No devices found in platformclCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM)  No devices found in platformclCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL)  Success (1)Platform Name                                 ARM PlatformDevice Name                                   Mali-LODX r0p0

D.获取CPU信息

lscpu

输出

Architecture:                    aarch64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
CPU(s):                          8
On-line CPU(s) list:             0-7
Thread(s) per core:              1
Core(s) per socket:              2
Socket(s):                       3
Vendor ID:                       ARM
Model:                           0
Model name:                      Cortex-A55
Stepping:                        r2p0
CPU max MHz:                     2208.0000
CPU min MHz:                     408.0000
BogoMIPS:                        48.00
L1d cache:                       256 KiB
L1i cache:                       256 KiB
L2 cache:                        1 MiB
L3 cache:                        3 MiB
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:        Mitigation; __user pointer sanitization
Vulnerability Spectre v2:        Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp

2.调用OpenCL SDK获取GPU信息

cat > cl_query.c <<-'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <CL/cl.h>int main() {cl_platform_id *platforms = NULL;cl_uint num_platforms = 0;// 获取可用的平台数量cl_int clStatus = clGetPlatformIDs(0, NULL, &num_platforms);platforms = (cl_platform_id*) malloc(sizeof(cl_platform_id) * num_platforms);// 获取所有平台IDclStatus = clGetPlatformIDs(num_platforms, platforms, NULL);printf("OpenCL平台数量: %d\n", num_platforms);// 遍历每个平台for (cl_uint i = 0; i < num_platforms; ++i) {char buffer[10240];printf("\n平台 %d:\n", i+1);// 获取平台名称clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, sizeof(buffer), buffer, NULL);printf("  名称: %s\n", buffer);// 获取平台供应商clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, sizeof(buffer), buffer, NULL);printf("  供应商: %s\n", buffer);// 获取平台版本clGetPlatformInfo(platforms[i], CL_PLATFORM_VERSION, sizeof(buffer), buffer, NULL);printf("  版本: %s\n", buffer);// 获取设备数量cl_uint num_devices = 0;clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);cl_device_id *devices = (cl_device_id*) malloc(sizeof(cl_device_id) * num_devices);clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);// 遍历每个设备for (cl_uint j = 0; j < num_devices; ++j) {printf("  设备 %d:\n", j+1);// 获取设备名称clGetDeviceInfo(devices[j], CL_DEVICE_NAME, sizeof(buffer), buffer, NULL);printf("    名称: %s\n", buffer);// 获取设备类型cl_device_type device_type;clGetDeviceInfo(devices[j], CL_DEVICE_TYPE, sizeof(device_type), &device_type, NULL);if (device_type & CL_DEVICE_TYPE_CPU)printf("    类型: CPU\n");if (device_type & CL_DEVICE_TYPE_GPU)printf("    类型: GPU\n");if (device_type & CL_DEVICE_TYPE_ACCELERATOR)printf("    类型: 加速器\n");// 获取计算单元数量cl_uint compute_units;clGetDeviceInfo(devices[j], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(compute_units), &compute_units, NULL);printf("    计算单元数: %d\n", compute_units);// 获取全局内存大小cl_ulong global_mem;clGetDeviceInfo(devices[j], CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(global_mem), &global_mem, NULL);printf("    全局内存大小: %llu MB\n", (unsigned long long)(global_mem / (1024 * 1024)));}free(devices);}free(platforms);return 0;
}
EOFgcc -o cl_query cl_query.c -lOpenCL
./cl_query

输出

OpenCL平台数量: 1平台 1:名称: ARM Platform供应商: ARM版本: OpenCL 2.1 v1.g6p0-01eac0.ba52c908d926792b8f5fe28f383a2b03设备 1:
arm_release_ver of this libmali is 'g6p0-01eac0', rk_so_ver is '6'.名称: Mali-LODX r0p0类型: GPU计算单元数: 4全局内存大小: 15872 MB

3.使用OpenCL API计算矩阵乘

cat > matmul.c <<-'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <CL/cl.h>
#include <time.h>
#include <sys/time.h>#define MATRIX_SIZE 8192
#define TILE_SIZE 32// 获取当前时间(秒),用于计算耗时
double get_current_time() {struct timeval tp;gettimeofday(&tp, NULL);return (double)(tp.tv_sec) + (double)(tp.tv_usec) / 1e6;
}#define xstr(s) str(s)
#define str(s) #sconst char *kernelSource = "                                  \n" \
"__kernel void mat_mul_optimized(const int N,                 \n" \
"                                __global float* A,           \n" \
"                                __global float* B,           \n" \
"                                __global float* C) {         \n" \
"    const int TILE_SIZE = " xstr(TILE_SIZE) ";               \n" \
"    __local float Asub[TILE_SIZE][TILE_SIZE];                \n" \
"    __local float Bsub[TILE_SIZE][TILE_SIZE];                \n" \
"    int global_row = get_global_id(1);                       \n" \
"    int global_col = get_global_id(0);                       \n" \
"    int local_row = get_local_id(1);                         \n" \
"    int local_col = get_local_id(0);                         \n" \
"    float sum = 0.0f;                                        \n" \
"    int numTiles = (N + TILE_SIZE - 1) / TILE_SIZE;          \n" \
"    for (int t = 0; t < numTiles; ++t) {                     \n" \
"        int tiled_row = global_row;                          \n" \
"        int tiled_col = t * TILE_SIZE + local_col;           \n" \
"        if (tiled_row < N && tiled_col < N)                  \n" \
"            Asub[local_row][local_col] = A[tiled_row * N + tiled_col];\n" \
"        else                                                 \n" \
"            Asub[local_row][local_col] = 0.0f;               \n" \
"        tiled_row = t * TILE_SIZE + local_row;               \n" \
"        tiled_col = global_col;                              \n" \
"        if (tiled_row < N && tiled_col < N)                  \n" \
"            Bsub[local_row][local_col] = B[tiled_row * N + tiled_col];\n" \
"        else                                                 \n" \
"            Bsub[local_row][local_col] = 0.0f;               \n" \
"        barrier(CLK_LOCAL_MEM_FENCE);                        \n" \
"        for (int k = 0; k < TILE_SIZE; ++k) {                \n" \
"            sum += Asub[local_row][k] * Bsub[k][local_col];  \n" \
"        }                                                    \n" \
"        barrier(CLK_LOCAL_MEM_FENCE);                        \n" \
"    }                                                        \n" \
"    if (global_row < N && global_col < N)                    \n" \
"        C[global_row * N + global_col] = sum;                \n" \
"}                                                            \n";int main() {int N = MATRIX_SIZE;size_t bytes = N * N * sizeof(float);// 分配主机内存float *h_A = (float*)malloc(bytes);float *h_B = (float*)malloc(bytes);float *h_C = (float*)malloc(bytes);// 初始化矩阵for(int i = 0; i < N*N; i++) {h_A[i] = 1.0f;h_B[i] = 1.0f;}// 获取平台和设备信息cl_platform_id platformId = NULL;cl_device_id deviceID = NULL;cl_uint retNumDevices;cl_uint retNumPlatforms;cl_int ret = clGetPlatformIDs(1, &platformId, &retNumPlatforms);ret = clGetDeviceIDs(platformId, CL_DEVICE_TYPE_DEFAULT, 1, &deviceID, &retNumDevices);// 创建 OpenCL 上下文cl_context context = clCreateContext(NULL, 1, &deviceID, NULL, NULL, &ret);// 创建命令队列cl_command_queue commandQueue = clCreateCommandQueue(context, deviceID, 0, &ret);// 创建内存缓冲区cl_mem d_A = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, &ret);cl_mem d_B = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, &ret);cl_mem d_C = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, &ret);// 将数据写入缓冲区ret = clEnqueueWriteBuffer(commandQueue, d_A, CL_TRUE, 0, bytes, h_A, 0, NULL, NULL);ret = clEnqueueWriteBuffer(commandQueue, d_B, CL_TRUE, 0, bytes, h_B, 0, NULL, NULL);// 记录编译开始时间double compile_start = get_current_time();// 创建程序对象cl_program program = clCreateProgramWithSource(context, 1, (const char**)&kernelSource, NULL, &ret);// 编译内核程序ret = clBuildProgram(program, 1, &deviceID, NULL, NULL, NULL);// 检查编译错误if (ret != CL_SUCCESS) {size_t log_size;clGetProgramBuildInfo(program, deviceID, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);char *log = (char *)malloc(log_size);clGetProgramBuildInfo(program, deviceID, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);printf("CL Compilation failed:\n%s\n", log);free(log);return 1;}// 记录编译结束时间double compile_end = get_current_time();double compile_time = compile_end - compile_start;// 创建 OpenCL 内核cl_kernel kernel = clCreateKernel(program, "mat_mul_optimized", &ret);// 设置内核参数ret = clSetKernelArg(kernel, 0, sizeof(int), (void*)&N);ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*)&d_A);ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&d_B);ret = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void*)&d_C);// 定义全局和本地工作区大小size_t local[2] = {TILE_SIZE, TILE_SIZE};size_t global[2] = {(size_t)((N + TILE_SIZE - 1) / TILE_SIZE) * TILE_SIZE,(size_t)((N + TILE_SIZE - 1) / TILE_SIZE) * TILE_SIZE};// 记录第一次内核执行开始时间double launch_start = get_current_time();// 执行内核ret = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL, global, local, 0, NULL, NULL);printf("clEnqueueNDRangeKernel:%d\n",ret);// 等待命令队列执行完成clFinish(commandQueue);// 记录第一次内核执行结束时间double launch_end = get_current_time();double launch_time = launch_end - launch_start;// 读取结果ret = clEnqueueReadBuffer(commandQueue, d_C, CL_TRUE, 0, bytes, h_C, 0, NULL, NULL);// 计算 GFLOPSdouble total_ops = 2.0 * N * N * N;double gflops = (total_ops / 1e9) / launch_time;// 输出结果printf("编译时间: %f 秒\n", compile_time);printf("第一次内核执行时间: %f 秒\n", launch_time);printf("计算性能: %f GFLOPS\n", gflops);// 释放资源ret = clFlush(commandQueue);ret = clFinish(commandQueue);ret = clReleaseKernel(kernel);ret = clReleaseProgram(program);ret = clReleaseMemObject(d_A);ret = clReleaseMemObject(d_B);ret = clReleaseMemObject(d_C);ret = clReleaseCommandQueue(commandQueue);ret = clReleaseContext(context);free(h_A);free(h_B);free(h_C);return 0;
}EOF
gcc -o matmul matmul.c -lOpenCL
./matmul

输出

编译时间: 0.031085 秒
第一次内核执行时间: 62.258528 秒
计算性能: 17.660418 GFLOPS

4.使用clpeak测试GPU的性能

git clone https://gitcode.com/gh_mirrors/cl/clpeak.git
git submodule update --init --recursive --remote
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build .
./clpeak

输出

Platform: ARM Platform
arm_release_ver of this libmali is 'g6p0-01eac0', rk_so_ver is '6'.Device: Mali-LODX r0p0Driver version  : 2.1 (Linux ARM64)Compute units   : 4Clock frequency : 1000 MHzGlobal memory bandwidth (GBPS)float   : 25.71float2  : 24.45float4  : 23.70float8  : 12.05float16 : 12.01Single-precision compute (GFLOPS)float   : 441.77float2  : 470.27float4  : 466.52float8  : 435.65float16 : 411.38Half-precision compute (GFLOPS)half   : 441.96half2  : 878.25half4  : 911.51half8  : 886.19half16 : 846.44No double precision support! SkippedInteger compute (GIOPS)int   : 124.96int2  : 125.71int4  : 125.16int8  : 123.82int16 : 124.24Integer compute Fast 24bit (GIOPS)int   : 125.16int2  : 125.63int4  : 125.20int8  : 123.73int16 : 124.33Integer char (8bit) compute (GIOPS)char   : 126.47char2  : 251.55char4  : 498.03char8  : 497.37char16 : 491.94Integer short (16bit) compute (GIOPS)short   : 126.31short2  : 250.90short4  : 249.47short8  : 248.51short16 : 245.30Transfer bandwidth (GBPS)enqueueWriteBuffer              : 8.54enqueueReadBuffer               : 9.97enqueueWriteBuffer non-blocking : 8.55enqueueReadBuffer non-blocking  : 9.99enqueueMapBuffer(for read)      : 61.66memcpy from mapped ptr        : 11.95enqueueUnmap(after write)       : 62.02memcpy to mapped ptr          : 11.89Kernel launch latency : 26.81 us

5.使用OpenBLAS测试CPU的算力

git clone https://github.com/xianyi/OpenBLAS.git
cd OpenBLAS
make TARGET=ARMV8
make install
cd benchmark
make TARGET=ARMV8 sgemm
cc sgemm.o -o sgemm /opt/OpenBLAS/lib/libopenblas.so -Wl,-rpath=/opt/OpenBLAS/lib/
export OPENBLAS_NUM_THREADS=8
export OPENBLAS_LOOPS=10
export OPENBLAS_PARAM_M=8192
export OPENBLAS_PARAM_N=8192
export OPENBLAS_PARAM_K=8192
./sgemm

输出

From :   1  To : 200 Step=1 : Transa=N : Transb=NSIZE                   Flops             TimeM=8192, N=8192, K=8192 :    53485.68 MFlops 205.571220 sec

6.分别用CPU与OpenCL测试opencv resize的性能

A.编译OpenCV支持OpenCL

  • Opencv修改点[链接libmali.so]
diff --git a/cmake/OpenCVDetectOpenCL.cmake b/cmake/OpenCVDetectOpenCL.cmake
index 6ab2cae070..c3cf235e45 100644
--- a/cmake/OpenCVDetectOpenCL.cmake
+++ b/cmake/OpenCVDetectOpenCL.cmake
@@ -3,9 +3,8 @@ if(APPLE)set(OPENCL_LIBRARY "-framework OpenCL" CACHE STRING "OpenCL library")set(OPENCL_INCLUDE_DIR "" CACHE PATH "OpenCL include directory")else()
-  set(OPENCL_LIBRARY "" CACHE STRING "OpenCL library")
-  set(OPENCL_INCLUDE_DIR "${OpenCV_SOURCE_DIR}/3rdparty/include/opencl/1.2" CACHE PATH "OpenCL include directory")
-  ocv_install_3rdparty_licenses(opencl-headers "${OpenCV_SOURCE_DIR}/3rdparty/include/opencl/LICENSE.txt")
+  set(OPENCL_LIBRARY "/usr/lib/aarch64-linux-gnu/libmali.so")
+  set(OPENCL_INCLUDE_DIR "/usr/include")endif()mark_as_advanced(OPENCL_INCLUDE_DIR OPENCL_LIBRARY)
  • 编译Opencv
git clone https://github.com/opencv/opencv.git
cd opencv
git checkout bdb6a968ce69a2bf7c34724f9052c20e941ab47b
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release \-DCMAKE_INSTALL_PREFIX=`pwd`/_install \-DWITH_OPENCL=ON -DWITH_NEON=ON \-DBUILD_SHARED_LIBS=ON \-D BUILD_opencv_world=ON -DBUILD_TESTS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_opencv_apps=OFF \-DBUILD_opencv_dnn=OFF -DBUILD_opencv_calib3d=OFF \-DBUILD_opencv_imgproc=ON -DBUILD_opencv_imgcodecs=ON ..
make -j4
make install

B.运行OpenCV测试程序

cat > opencv_resize.cpp <<-'EOF'
#include <opencv2/opencv.hpp>
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include <map>void run(int resize_mode)
{// 创建一个32x32的随机图像cv::Mat src = cv::Mat::zeros(32, 32, CV_8UC3);cv::randu(src, cv::Scalar::all(0), cv::Scalar::all(255));// ------------------------------------// 在CPU上执行// ------------------------------------cv::ocl::setUseOpenCL(false);cv::Mat enlarged_cpu, resized_back_cpu;// 记录放大操作的开始时间int64 start_time_cpu = cv::getTickCount();for(int i=0;i<100;i++){// 放大到8192x8192cv::resize(src, enlarged_cpu, cv::Size(8192, 8192), 0, 0, resize_mode);// 缩小回32x32cv::resize(enlarged_cpu, resized_back_cpu, cv::Size(32, 32), 0, 0, resize_mode);}// 记录缩小操作的结束时间int64 end_time_cpu = cv::getTickCount();// 计算缩小操作的耗时double time_resize_cpu = (end_time_cpu - start_time_cpu) / cv::getTickFrequency();// ------------------------------------// 在GPU(OpenCL)上执行// ------------------------------------cv::ocl::setUseOpenCL(true);cv::UMat src_umat;src.copyTo(src_umat);cv::UMat enlarged_gpu, resized_back_gpu;// 记录放大操作的开始时间int64 start_time_gpu = cv::getTickCount();for(int i=0;i<100;i++){// 放大到8192x8192cv::resize(src_umat, enlarged_gpu, cv::Size(8192, 8192), 0, 0, resize_mode);// 缩小回32x32cv::resize(enlarged_gpu, resized_back_gpu, cv::Size(32, 32), 0, 0, resize_mode);}// 记录缩小操作的结束时间int64 end_time_gpu = cv::getTickCount();// 计算缩小操作的耗时double time_resize_gpu = (end_time_gpu - start_time_gpu) / cv::getTickFrequency();std::cout <<"CPU耗时(秒):" << time_resize_cpu << " " << "GPU耗时(秒):" << time_resize_gpu << std::endl;
}int main() {// 检查系统是否支持OpenCLif (!cv::ocl::haveOpenCL()) {std::cout << "系统不支持OpenCL。" << std::endl;return -1;}// 输出OpenCL设备信息cv::ocl::Context context;if (!context.create(cv::ocl::Device::TYPE_GPU)) {std::cout << "未找到可用的GPU设备,使用CPU执行。" << std::endl;} else {cv::ocl::Device device = cv::ocl::Device::getDefault();std::cout << "使用的OpenCL设备:" << device.name() << std::endl;}// 定义要测试的插值方法std::vector<int> interpolation_methods = {cv::INTER_NEAREST,cv::INTER_LINEAR,cv::INTER_CUBIC,cv::INTER_AREA,cv::INTER_LANCZOS4};// 插值方法的名称,用于输出结果std::vector<std::string> interpolation_names = {"INTER_NEAREST","INTER_LINEAR","INTER_CUBIC","INTER_AREA","INTER_LANCZOS4"};for (size_t i = 0; i < interpolation_methods.size(); ++i) {int interpolation = interpolation_methods[i];std::string method_name = interpolation_names[i];std::cout << "插值方法:" << method_name << " ";run(interpolation);}		return 0;
}
EOF
g++ -o opencv_resize opencv_resize.cpp -I _install/include/opencv4 \_install/lib/libopencv_world.so -Wl,-rpath=_install/lib
export OPENBLAS_NUM_THREADS=8
./opencv_resize

输出

arm_release_ver of this libmali is 'g6p0-01eac0', rk_so_ver is '6'.
使用的OpenCL设备:Mali-LODX r0p0
插值方法:INTER_NEAREST  CPU耗时():3.01526 GPU耗时():0.0672681
插值方法:INTER_LINEAR   CPU耗时():5.3227  GPU耗时():0.0189366
插值方法:INTER_CUBIC    CPU耗时():8.22734 GPU耗时():11.6337
插值方法:INTER_AREA     CPU耗时():20.4999 GPU耗时():27.3197
插值方法:INTER_LANCZOS4 CPU耗时():29.3602 GPU耗时():43.9484
http://www.lryc.cn/news/519170.html

相关文章:

  • 基于Centos 7系统的安全加固方案
  • IT行业的发展趋势
  • 《探秘开源多模态神经网络模型:AI 新时代的万能钥匙》
  • ROS核心概念解析:从Node到Master,再到roslaunch的全面指南
  • 2025广州国际汽车内外饰技术展览会:引领汽车内外饰发展新潮流-Automotive Interiors
  • ElasticSearch内存占用率过高怎么办?
  • 基于Qt的OFD阅读器开发原理与实践
  • 用 HTML5 Canvas 和 JavaScript 实现流星雨特效
  • Apifox=Postman+Swagger+Jmeter+Mock
  • SpringBoot多数据源架构实现
  • HarmonyOS开发:传参方式
  • OpenCV计算机视觉 07 图像的模块匹配
  • 国产游戏崛起,燕云十六移动端1.9上线,ToDesk云电脑先开玩
  • 企业级PHP异步RabbitMQ协程版客户端 2.0 正式发布
  • [OPEN SQL] 限定选择行数
  • Vite源码学习分享(一)
  • 定位,用最通俗易懂的方法2:TDOA与对应的CRLB
  • Linux第一课:c语言 学习记录day06
  • ExplaineR:集成K-means聚类算法的SHAP可解释性分析 | 可视化混淆矩阵、决策曲线、模型评估与各类SHAP图
  • 2025年第三届“华数杯”国际大学生数学建模竞赛A题题目
  • 用c实现C++类(八股)
  • 【C++多线程编程:六种锁】
  • 【Javascript Day5】for循环及典型案例
  • #渗透测试#网络安全#一文了解什么是shell反弹!!!
  • 《解锁图像的语言密码:Image Caption 开源神经网络项目全解析》
  • 抢占欧洲电商高地,TikTok 运营专线成 “秘密武器”
  • 人工智能-数据分析及特征提取思路
  • 2024 China Collegiate Programming Contest (CCPC) Zhengzhou Onsite 基础题题解
  • halcon3d 如何计算平面法向量!确实很简单
  • 浅尝Appium自动化框架