当前位置: 首页 > news >正文

Spark-Streaming有状态计算

一、上下文

《Spark-Streaming初识》中的NetworkWordCount示例只能统计每个微批下的单词的数量,那么如何才能统计从开始加载数据到当下的所有数量呢?下面我们就来通过官方例子学习下Spark-Streaming有状态计算。

二、官方例子

所属包:org.apache.spark.examples.streaming

object StatefulNetworkWordCount {def main(args: Array[String]): Unit = {if (args.length < 2) {System.err.println("Usage: StatefulNetworkWordCount <hostname> <port>")System.exit(1)}StreamingExamples.setStreamingLogLevels()val sparkConf = new SparkConf().setAppName("StatefulNetworkWordCount")//创建微批为 1 秒的上下文val ssc = new StreamingContext(sparkConf, Seconds(1))//指定 checkpoint 目录ssc.checkpoint(".")// 用一个 List 初始化一个 RDDval initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1)))// 在目标ip:port上创建一个ReceiverInputDStream,并对分隔测试的输入流中的单词进行计数(例如由'nc'生成)val lines = ssc.socketTextStream(args(0), args(1).toInt)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))// 使用mapWithState更新累积计数这将给出一个由状态组成的DStream(即单词的累积计数)val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {val sum = one.getOrElse(0) + state.getOption.getOrElse(0)val output = (word, sum)state.update(sum)output}val stateDstream = wordDstream.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD))stateDstream.print()ssc.start()ssc.awaitTermination()}
}

三、分析

1、构建SparkConf

它是Spark应用程序的配置,用于设置Spark的各种参数。支持链式设置

new SparkConf().setMaster("local").setAppName("My app")

 一旦SparkConf对象传递给Spark,用户就不能再对其进行修改。Spark不支持在运行时修改配置

2、构建StreamingContext

它是Spark Streaming功能的主要入口点,且提供了从各种输入源创建[[org.apache.spark.streaming.dstream.DStream]] 的方法。

创建和转换DStreams后,可以分别使用start()、stop()启动和停止流计算,awaitTermination()允许当前线程通过stop()或异常等待上下文的终止。

3、设置checkpoint

StreamingContext最终还是通过SparkContext来设置checkpoint,但其实都是为各自的checkpointDir设置checkpoint路径,在有状态计算中checkpoint是必须的。

所谓有状态计算就必须要把历史状态给存储下来,spark中使用使用checkpoint来实现这个存储,每个微批的数据的计算都要更新到历史状态中。

class SparkContext(config: SparkConf) extends Logging {private[spark] var checkpointDir: Option[String] = None}
class StreamingContext private[streaming] (_sc: SparkContext,_cp: Checkpoint,_batchDur: Duration) extends Logging {private[streaming] var checkpointDir: String = {if (isCheckpointPresent) {sc.setCheckpointDir(_cp.checkpointDir)_cp.checkpointDir} else {null}}}

4、初始化一个RDD

为什么要初始化一个RDD呢?我们看看下面是如何用到的。

5、创建一个ReceiverInputDStream

这里是从TCP源hostname:port创建输入流。使用TCP套接字接收数据,并使用给定的转换器将接收字节解释为对象

6、处理单词

从源码中可以看出会把这样的文本

hadoop spark flink kafka hadoop spark-streaming

处理成这样的格式

hadoop 1

spark 1

flink 1

kafka 1

hadoop 1

spark-streaming 1

6、使用mapWithState更新累积计数

该算子可以维护并更新每个key的状态。

这里用到一个新对象:StateSpec,且用到了它的两个方法,initialState和function

initialState:设置包含“mapWithState”将使用的初始状态的RDD`

function:设置实际的状态更新操作

//第1个参数:状态 key 的类别
//第2个参数:状态 value 的类别
//第3个参数:状态 数据 的类别
//第4个参数:状态 处理完要返回 的类别
def mappingFunction(key: String, value: Option[Int], state: State[Int]): Option[String] = {// 使用state.exists()、state.get()、state.update()和state.remove()来管理状态,并返回必要的字符串
}

四、运行

运行Netcat

nc -lk 9999

新建一个窗口运行官方例子

cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/lib/spark/
bin/run-example org.apache.spark.examples.streaming.StatefulNetworkWordCount cdh1 9999


大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议如下:

第四届大数据、信息与计算机网络国际学术会议(BDICN 2025)

  • 广州
  • https://ais.cn/u/fi2yym

第四届电子信息工程、大数据与计算机技术国际学术会议(EIBDCT 2025)

  • 青岛
  • https://ais.cn/u/nuQr6f

第六届大数据与信息化教育国际学术会议(ICBDIE 2025)

  • 苏州
  • https://ais.cn/u/eYnmQr

第三届通信网络与机器学习国际学术会议(CNML 2025)

  • 南京
  • https://ais.cn/u/vUNva2
http://www.lryc.cn/news/516080.html

相关文章:

  • Markdown如何导出Html文件Markdown文件
  • 使用Python进行图像裁剪和直方图分析
  • 企业内管信息化系统
  • 【python因果库实战15】因果生存分析4
  • Linux 线程详解
  • 云架构:考量与框架
  • SD下载、安装、使用、卸载-Stable Diffusion整合包v4.10发布!
  • java 发送邮件
  • 聚类系列 (二)——HDBSCAN算法详解
  • AngularJS HTML DOM
  • C语言延时实现
  • OSI模型的网络层中产生拥塞的主要原因?
  • 机器学习周报-ModernTCN文献阅读
  • 什么是网关路由
  • 信号的产生、处理
  • 在Linux中,zabbix如何监控脑裂?
  • C++基础概念复习
  • Earth靶场
  • JavaScript 日期格式
  • django vue3实现大文件分段续传(断点续传)
  • xiaoya小雅超集使用夸克网盘缓存教程
  • 计算机基础知识复习1.4
  • SpringMVC(三)请求
  • Node.js应用程序遇到了内存溢出的问题
  • 如何构建云原生时空大数据平台?
  • 二极管钳位电路分享
  • 腾讯云智能结构化 OCR:驱动多行业数字化转型的核心引擎
  • 19.3、Unix Linux安全分析与防护
  • JVM对象内存结构
  • 联邦学习和大模型相结合: 数据隐私,提升训练效率,架构优化