当前位置: 首页 > news >正文

【python因果库实战15】因果生存分析4

这里写目录标题

      • 加权标准化生存分析
      • 总结
        • 个体层面的生存曲线

在这里插入图片描述

加权标准化生存分析

我们还可以将加权与标准化结合起来,使用 WeightedStandardizedSurvival 模块。在这里,我们将逆倾向得分加权模型(根据基线协变量重新加权人群)与加权回归以及标准化模型相结合:

from causallib.survival.weighted_standardized_survival import WeightedStandardizedSurvivalipw = IPW(learner=LogisticRegression(max_iter=2000))
poly_transform_pipeline = Pipeline([("transform", PolynomialFeatures(degree=2)), ("LR", LogisticRegression(max_iter=8000, C=1.5))]
)
weighted_standardized_survival = WeightedStandardizedSurvival(survival_model=poly_transform_pipeline, weight_model=ipw
)
weighted_standardized_survival.fit(X, a, t, y)population_averaged_survival_curves = weighted_standardized_survival.estimate_population_outcome(X, a, t
)plot_survival_curves(population_averaged_survival_curves,labels=["non-quitters", "quitters"],title="Weighted standardized survival of smoke quitters vs. non-quitters in a 10 years observation period",
)

在这里插入图片描述

或者,我们也可以使用 lifelines 包中的 RegressionFitter 类,例如 Cox 比例风险拟合器。这是一种加权的 Cox 分析。

ipw = IPW(learner=LogisticRegression(max_iter=1000))
weighted_standardized_survival = WeightedStandardizedSurvival(survival_model=lifelines.CoxPHFitter(), weight_model=ipw)# Note the fit_kwargs (passed to CoxPHFitter.fit() method)
weighted_standardized_survival.fit(X, a, t, y, fit_kwargs={'robust': True})# Without setting 'robust=True', we'll get the following warning:
"""StatisticalWarning: It appears your weights are not integers, possibly propensity or sampling scores then?
It's important to know that the naive variance estimates of the coefficients are biased. Instead a) set `robust=True` in the call to `fit`, or b) use Monte Carlo to
estimate the variances."""population_averaged_survival_curves = weighted_standardized_survival.estimate_population_outcome(X, a, t)plot_survival_curves(population_averaged_survival_curves, labels=['non-quitters', 'quitters'], title='Weighted standardized survival of smoke quitters vs. non-quitters in a 10 years observation period')

在这里插入图片描述

总结

不同模型的并列比较。

import itertoolsdef plot_multiple_models(models_dict):grid_dims = (int(np.round(np.sqrt(len(models_dict)))), int(np.ceil(np.sqrt(len(models_dict)))))grid_indices = itertools.product(range(grid_dims[0]), range(grid_dims[1]))fig, ax = plt.subplots(*grid_dims)models_names = list(models_dict.keys())for model_name, plot_idx in zip(models_names, grid_indices):model = models_dict[model_name]model.fit(X, a, t, y)curves = model.estimate_population_outcome(X, a, t, y)ax[plot_idx].plot(curves[0])ax[plot_idx].plot(curves[1])ax[plot_idx].set_title(model_name)ax[plot_idx].set_ylim(0.7, 1.02)ax[plot_idx].grid()plt.tight_layout()plt.show()
MODELS_DICT = {"MarginalSurvival Kaplan-Meier": MarginalSurvival(survival_model=None),"MarginalSurvival LogisticRegression": MarginalSurvival(survival_model=LogisticRegression(max_iter=2000)),"MarginalSurvival PiecewiseExponential": MarginalSurvival(survival_model=lifelines.PiecewiseExponentialFitter(breakpoints=range(1, 120, 10))),"WeightedSurvival Kaplan-Meier": WeightedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)), survival_model=None),"WeightedSurvival LogisticRegression": WeightedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)),survival_model=LogisticRegression(max_iter=2000),),"WeightedSurvival WeibullFitter": WeightedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)),survival_model=lifelines.WeibullFitter(),),"StandardizedSurvival LogisticRegression": StandardizedSurvival(survival_model=LogisticRegression(max_iter=2000)),"StandardizedSurvival Cox": StandardizedSurvival(survival_model=lifelines.CoxPHFitter()),"WeightedStandardizedSurvival": WeightedStandardizedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)),survival_model=LogisticRegression(max_iter=2000),),
}plot_multiple_models(MODELS_DICT)

在这里插入图片描述

个体层面的生存曲线

在使用直接结果模型(StandardizedSurvivalWeightedStandardizedSurvival)时,可以在 causallib 中生成个体层面的效果估计和生存曲线。

%matplotlib inline
import matplotlib as mpl
import seaborn.objects as so
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from causallib.survival import StandardizedSurvival
from causallib.datasets import load_nhefs_survival
data = load_nhefs_survival(augment=False, onehot=False)
data.t = data.t.rename("longevity")
data.X.join(data.a).join(data.t).join(data.y)

在这里插入图片描述

现在让我们创建一个基于公式的数据转换器,以便轻松指定以下两点:

  • 使用样条灵活地建模连续变量,
  • 创建与所有变量的治疗交互项,以允许效应修正。
from formulaic import Formula
from sklearn.base import BaseEstimator, TransformerMixinclass FormulaTransformer(BaseEstimator, TransformerMixin):def __init__(self, formula):super().__init__()self.formula = formuladef fit(self, X, y=None):return selfdef transform(self, X, y=None):X_ = Formula(self.formula).get_model_matrix(X)return X_
formula = f"""~ 1 + {data.a.name}*(C(exercise) + C(active) + C(education) + sex + race + bs(age, degree=5) + bs(smokeintensity) + bs(smokeyrs) + bs(wt71)+ bs({data.t.name}, degree=5) )"""estimator = make_pipeline(FormulaTransformer(formula),LogisticRegression(penalty="none", max_iter=1000)
)model = StandardizedSurvival(estimator,stratify=False,
)
model.fit(data.X, data.a, data.t, data.y)
po = model.estimate_individual_outcome(data.X, data.a, data.t)
po

在这里插入图片描述

遵循 lifelines 的惯例,结果的维度将不同的时间点作为行,个体作为列。
列进一步按照治疗分配索引,因为这些值是潜在结果。
这种结构使我们能够像在非生存分析中那样获得个体层面的效果(生存差异):

effect = po[1] - po[0]
# effect

我们现在将结果转置,使其变为长格式,以便后续绘图:

effect = effect.reset_index(names="time").melt(id_vars="time", var_name="id", value_name="effect")
effect

在这里插入图片描述

f = mpl.figure.Figure()# Plot inidividual lines:
p = so.Plot(effect,x="time",y="effect",group="id",
).add(so.Lines(linewidth=.5, alpha=0.1, color="#919090")
).label(title="Spaghetti plot of the effect difference",
).on(f).plot()# Plot average effect:
avg_effect = effect.groupby("time")["effect"].mean().reset_index()
ax = f.axes[0]
ax.plot(avg_effect["time"], avg_effect["effect"], color="#062f80")
ax.text(0, 0, "ATE",verticalalignment="bottom",color="#062f80"
)
f

在这里插入图片描述
一旦我们得到了个体级别的生存曲线,我们可以任意聚合它们来观察效应在不同的协变量分层中是如何变化的。

f = mpl.figure.Figure()
effectX = effect.merge(data.X, left_on="id", right_index=True)
strata = "race"p_eff_strat = so.Plot(effectX,x="time",y="effect",color=strata,  # Stratify the effect curves bygroup="id",
).add(so.Lines(linewidth=.5, alpha=0.1)
).scale(color=so.Nominal(["#1f77b4", "#ff7f0e"]),
).label(title="Spaghetti plot for stratified effects",
).on(f).plot()
p_eff_stratavg_effect = effectX.groupby(["time", strata])["effect"].mean().reset_index()
ax = f.axes[0]
for s, stratum_data in avg_effect.groupby(strata):ax.plot(stratum_data["time"], stratum_data["effect"], color="black", linestyle="--",)ax.text(stratum_data["time"].iloc[-1], stratum_data["effect"].iloc[-1],f"{strata}:{s}",verticalalignment="center",)f

在这里插入图片描述

http://www.lryc.cn/news/516076.html

相关文章:

  • Linux 线程详解
  • 云架构:考量与框架
  • SD下载、安装、使用、卸载-Stable Diffusion整合包v4.10发布!
  • java 发送邮件
  • 聚类系列 (二)——HDBSCAN算法详解
  • AngularJS HTML DOM
  • C语言延时实现
  • OSI模型的网络层中产生拥塞的主要原因?
  • 机器学习周报-ModernTCN文献阅读
  • 什么是网关路由
  • 信号的产生、处理
  • 在Linux中,zabbix如何监控脑裂?
  • C++基础概念复习
  • Earth靶场
  • JavaScript 日期格式
  • django vue3实现大文件分段续传(断点续传)
  • xiaoya小雅超集使用夸克网盘缓存教程
  • 计算机基础知识复习1.4
  • SpringMVC(三)请求
  • Node.js应用程序遇到了内存溢出的问题
  • 如何构建云原生时空大数据平台?
  • 二极管钳位电路分享
  • 腾讯云智能结构化 OCR:驱动多行业数字化转型的核心引擎
  • 19.3、Unix Linux安全分析与防护
  • JVM对象内存结构
  • 联邦学习和大模型相结合: 数据隐私,提升训练效率,架构优化
  • 命令别名和命令历史
  • 打造三甲医院人工智能矩阵新引擎(二):医学影像大模型篇--“火眼金睛”TransUNet
  • Scade pragma: separate_io
  • IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)