当前位置: 首页 > news >正文

HIVE数据仓库分层

1:为什么要分层

大多数情况下,我们完成的数据体系却是依赖复杂、层级混乱的。在不知不觉的情况下,我们可能会做出一套表依赖结构混乱,甚至出现循环依赖的数据体系。

我们需要一套行之有效的数据组织和管理方法来让我们的数据体系更有序,这就是谈到的数据分层。数据分层并不能解决所有的数据问题。

2:数仓的三层结构

我们将数据模型分为三层:数据运营层( ODS )、数据仓库层(DW)和数据应用层/应用数据存储(APP/ADS)
ODS层存放的是接入的原始数据
DW层是存放我们要重点设计的数据仓库中间层数据
APP/ADS是面向业务定制的应用数据。

1、数据运营层:ODS(Operational Data Store)

“面向主题的”数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。
一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。

2、数据仓库层:DW(Data Warehouse)

数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层。

1)数据明细层:DWD(Data Warehouse Detail)

该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。 另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性。

2)数据中间层:DWM(Data WareHouse Middle)

该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。 直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。

3)数据服务层:DWS(Data WareHouse Servce)

又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。
一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。

3、数据应用层:APP(Application)/ADS

在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。

3:总结及其他

ODS层: 源数据层作用: 对接数据源, 和数据源的数据保持相同的粒度(将数据源的数据完整的拷贝到ODS层中)注意:如果数据来源于文本文件, 可能会需要先对这些文本文件进行预处理(spark)操作, 将其中不规则的数据, 不完整的数据, 脏乱差的数据先过滤掉, 将其转换为一份结构化的数据, 然后灌入到ODS层一般放置 事实表数据和少量的维度表数据DW层:  数据仓库层DWD层: 明细层作用: 用于对ODS层数据进行清洗转换工作 , 以及进行少量的维度退化操作少量: 1) 将多个事实表的数据合并为一个事实表操作2) 如果维度表放置在ODS层 一般也是在DWD层完成维度退化DWM层: 中间层    作用:  1) 用于进行维度退化操作  2) 用于进行提前聚合操作(周期快照事实表)DWS层: 业务层    作用: 进行细化维度统计分析操作DA层:  数据应用层作用: 存储基于DWS层再次分析的结果, 用于对接后续的应用(图表, 推荐系统...)例如:比如DWS层的数据表完成了基于订单表各项统计结果信息,  但是图表只需要其中销售额, 此时从DWS层将销售额的数据提取出来存储到DA层DIM层: 维度层作用: 存储维度表数据


 

http://www.lryc.cn/news/512683.html

相关文章:

  • 数据结构与算法之动态规划: LeetCode 2407. 最长递增子序列 II (Ts版)
  • 电子电气架构 --- 什么是自动驾驶技术中的域控制单元(DCU)?
  • html5css3
  • FPGA多路红外相机视频拼接输出,提供2套工程源码和技术支持
  • python实战(十二)——如何进行新词发现?
  • 动手做计算机网络仿真实验入门学习
  • 完整的 FFmpeg 命令使用教程
  • Leetcode 3405. Count the Number of Arrays with K Matching Adjacent Elements
  • Springboot(五十六)SpringBoot3集成SkyWalking
  • 有没有免费提取音频的软件?音频编辑软件介绍!
  • Linux 中查看内存使用情况全攻略
  • 【SQL Server】教材数据库(3)
  • 使用 ECharts 与 Vue 构建数据可视化组件
  • Yocto 项目 - 共享状态缓存 (Shared State Cache) 机制
  • Unity3D仿星露谷物语开发9之创建农场Scene
  • STM32-笔记20-测量按键按下时间
  • 2024年12月30日Github流行趋势
  • SAP PP bom历史导出 ALV 及XLSX 带ECN号
  • 使用WebRTC进行视频通信
  • npm ERR! ECONNRESET 解决方法
  • 【连续学习之SS-IL算法】2021年CPVR会议论文Ss-il:Separated softmax for incremental learning
  • Go+chromedp实现Web UI自动化测试
  • 【MySQL 高级特性与性能优化】
  • Spring Boot教程之三十九: 使用 Maven 将 Spring Boot 应用程序 Docker 化
  • 微信小程序开发示例
  • 【机器学习】概述
  • 音视频采集推流时间戳记录方案
  • 【Linux】:线程安全 + 死锁问题
  • 【深度学习】时间序列表示方法
  • 1.微服务灰度发布落地实践(方案设计)