当前位置: 首页 > news >正文

损失函数-二分类和多分类

二分类和多分类的损失函数

二分类

  • 损失函数
    L ( y , y ^ ) = − ( y l o g ( y ^ ) ) + ( 1 − y ) l o g ( 1 − y ^ ) L(y,\hat{y}) = -(ylog(\hat{y})) + (1-y)log(1-\hat{y}) L(y,y^)=(ylog(y^))+(1y)log(1y^)
    其中真实标签表示为y(取值为 0 或 1),预测概率表示为 y ^ \hat{y} y^(取值在 0 到 1 之间)

  • 代码

import torch
import torch.nn as nncriterion = nn.BCELoss()  # 或者使用 nn.BCEWithLogitsLoss()  BCEWithLogitsLoss可以直接接收logit输出
# 假设模型的输出 logits
logits = torch.tensor([0.2, 0.8, 0.5, 0.1]) #shape: (4, 1) 
predicted_probabilities = torch.sigmoid(logits) #shape: (4, 1) 
# 真实标签
labels = torch.tensor([0.0, 1.0, 1.0, 0.0]) #shape: (4, 1) 
# 计算损失
loss = criterion(predicted_probabilities, labels)
print("Loss:", loss.item())
  • 可视化损失值
    对于输出的loss值,我们往往不能理解这个loss是好还是坏,我们重看损失函数,发现对于单个正样本来说:
    l o s s = − l o g ( y ^ ) loss = -log(\hat{y}) loss=log(y^)
    对于单个负样本来说:
    l o s s = − l o g ( 1 − y ^ ) loss = -log(1-\hat{y}) loss=log(1y^)
    从这个公式我们可以反推模型对正样本预测的概率为:
    h i t p o s = e − l o s s hit_{pos} = e^{-loss} hitpos=eloss
    对负样本预测的概率为:
    h i t n e g = 1 − e − l o s s hit_{neg} = 1-e^{-loss} hitneg=1eloss
    这个hit就比较形象了,$hit_{pos}$越接近1,说明正样本的预测效果效果越好,$hit_{neg}$越接近0,说明负样本的预测效果效果越好

多分类

  • 损失函数
    L ( y , y ^ ) = − ∑ c = 1 C y l o g ( y ^ ) L(y,\hat{y}) = -\sum_{c=1}^Cylog(\hat{y}) L(y,y^)=c=1Cylog(y^)
    其中真实标签表示为y(取值为 0 或 1,表示是否属于第c类),预测概率表示为$\hat{y}$ (取值在 0 到 1 之间)
  • 代码
import torch
import torch.nn as nncriterion = nn.CrossEntropyLoss()# 假设模型的输出 logits(未经过 sigmoid)
logits = torch.tensor([[1.0, 2.0],  # 类别 0 和 1 的 logits[0.0, 1.0],[0.5, 0.5],[0.0, 0.0]]) # shape:(4,2)# 真实标签,格式为类别索引
# 0 表示第一个类别,1 表示第二个类别
labels = torch.tensor([1, 1, 0, 0])  # shape:(1,4)# 计算损失
loss = criterion(logits, labels)print("Loss:", loss.item())
  • 可视化损失值
    对于输出的loss值,我们往往不能理解这个loss是好还是坏,我们重看损失函数,发现对于单个样本来说:
    l o s s = − l o g ( y ^ ) loss = -log(\hat{y}) loss=log(y^)
    从这个公式我们可以反推模型对当前样本的正确类别预测的概率为:
    h i t = e − l o s s hit = e^{-loss} hit=eloss
    这个hit就比较形象了,hit越接近1,说明效果越好

二分类和多分类区别

  • 从损失函数的物理含义上来看,二分类的损失函数不仅希望正样本输出概率接近1,并且希望负样本的输出概率接近0;而多分类的损失函数仅仅希望正样本输出概率接近1,对于负样本其实没有约束
  • 对于二分类问题:如果你希望模型不仅能找出正样本,而且筛掉副样本,就用二分类损失。如果你仅仅希望找出正样本而不管负样本,多分类的损失也能用。

多分类问题中评价问题

TP(True Positive):真实标签为正类,模型预测为正类的样本数量。
TN(True Negative):真实标签为负类,模型预测为负类的样本数量。
FP(False Positive):真实标签为负类,但模型预测为正类的样本数量。
FN(False Negative):真实标签为正类,但模型预测为负类的样本数量。

  • 准确率acc
    关心模型预测的能力
    a c c = T P + T N T P + F P + F N + T N acc = \frac{TP+TN}{TP+FP+FN+TN} acc=TP+FP+FN+TNTP+TN

  • 精准率pre
    关心模型预测负样本能力
    p r e = T P T P + F P pre = \frac{TP}{TP+FP} pre=TP+FPTP

  • 召回率Recall
    关心模型预测正样本的能力
    r e c a l l = T P T P + F N recall = \frac{TP}{TP+FN} recall=TP+FNTP

http://www.lryc.cn/news/512506.html

相关文章:

  • 汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型,识别率89.7%
  • 从 Elastic 迁移到 Easysearch 指引
  • Yapi RCE 复现和批量编写
  • 【2024年-9月-21日-开源社区openEuler实践记录】PilotGo:简化运维管理的开源利器
  • ubuntu 20.04 国内源安装docker
  • 比亚迪30亿教育慈善基金正式启动,助推中国科教进步
  • 【链表】重排链表,看似复杂实则并不简单~
  • yakit-靶场-高级前端加解密与验签实战(for嵌套纯享版)
  • 洛谷 P1328 [NOIP2014 提高组] 生活大爆炸版石头剪刀布
  • NLP论文速读(NeurIPS 2024)|BERT作为生成式上下文学习者BERTs are Generative In-Context Learners
  • 亚马逊云科技 | Amazon Nova:智能技术新势力
  • Kali 自动化换源脚本编写与使用
  • 【已解决】PDF文档有密码怎么办(2024新)免费在线工具PDF2Go
  • 华为ensp-BGP联盟
  • ArcGIS中怎么进行水文分析?(思路介绍)
  • LabVIEW中实现多个Subpanel独立调用同一个VI
  • 【SpringMVC】Bean 加载控制
  • Socket编程中关于服务器端监听端口与新连接端口的深入剖析
  • 如何通过HTTP API更新Doc
  • Qt5 中 QGroupBox 标题下沉问题解决
  • [OpenGL]使用glsl实现smallpt
  • elementui的默认样式修改
  • mysql的主从配置
  • CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
  • 深入了解PINN:物理信息神经网络(Physics-Informed Neural Networks)
  • 人形机器人全身运动规划相关资料与文章
  • 使用uWSGI将Flask应用部署到生产环境
  • 微服务监控工具Grafana
  • 用户界面的UML建模06
  • 【力扣刷题第一天】63.不同路径Ⅱ