当前位置: 首页 > news >正文

代码随想录算法训练营第51期第32天 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

理论基础

动态规划:dp,每一个状态都是由上个状态推导出来的,因为我是先写完三道题再看理论的,所以有点感概;

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

509. 斐波那契数icon-default.png?t=O83Ahttps://leetcode.cn/problems/fibonacci-number/

1.因为是n是动态的,所以需要用malloc来分配内存,因为后面会对dp赋值,所以初始化的代码我注释了

2.因为求n,但下标0是从开始的,所以需要n+1

3.这里也可以用递归写,但是复杂度有点2的n次方,我就不记录了

4.我还记录了只需要用2个变量来存储结果的写法,这样就不需要用数组了

动归五部曲

1.确定dp数组以及下标的含义:dp[i]表示第i个斐波那契数

2.确定递推公式:dp[i] = dp[i-1] + dp[i-2]

3.dp数组如何初始化:dp[0] = 0, dp[1] = 1

4.确定遍历顺序:从前往后遍历

5.举例推导 a = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] ,这里n=10,但是a[10]是第11个斐波那契数,所以需要n+1

int fib(int n) {if (n <= 1) {return n;}n = n + 1;int *dp = (int*)malloc(sizeof(int) * n);// for (int i = 0; i < n; i++) {//     dp[i] = 0;// }dp[0] = 0;dp[1] = 1;for (int i = 2; i < n; i++) {dp[i] = dp[i-1] + dp[i-2];}return dp[n-1];
}//这里也可以用递归写,但是复杂度有点2的n次方,我就不记录了 
int fib(int n) {if (n <= 1) {return n;}int fir = 0;int sec = 1;int tmp = 0;for (int i = 2; i <= n ; i++) {tmp = fir + sec;fir = sec;sec = tmp;}return sec;
}

70. 爬楼梯

70. 爬楼梯icon-default.png?t=O83Ahttps://leetcode.cn/problems/climbing-stairs/MD,写在vscode上的东西丢了,我还得再写一次

1.这里和上一题一样,代码也差不多,除了初始化,其他代码都可以复用了。

动归五部曲

1.确定dp数组以及下标的含义:dp[i]表示第i个斐波那契数

2.确定递推公式:dp[i] = dp[i-1] + dp[i-2]

3.dp数组如何初始化:dp[1] = 1, dp[2] = 2, 这里dp[0]没有意义,但是为了统一,我还是初始化为0

4.确定遍历顺序:从前往后遍历

5.举例推导如下:

1:1

2:1, 2

3:1+1+1,2+1,1+2

4:1+1+1+1,2+1+1,1+2+1,1+1+2,2+2

这里4是第3层再加1和第2层再加2,所以4是第3层和第2层的和,所以dp[4] = dp[3] + dp[2]

int climbStairs(int n) {if (n <= 3) {return n;}n = n + 1;int *dp = (int *)malloc(sizeof(int) * n);dp[0] = 0;dp[1] = 1;dp[2] = 2;for (int i = 3; i < n; i++) {dp[i] = dp[i-2] + dp[i-1];}return dp[n-1];
}int climbStairs(int n) {if (n <= 2) {return n;}int pre = 1;int cur = 2;int tmp = 0;for (int i = 3; i <= n; i++) {tmp = pre + cur;pre = cur;cur  = tmp;}return cur;
}

746. 使用最小花费爬楼梯

746. 使用最小花费爬楼梯icon-default.png?t=O83Ahttps://leetcode.cn/problems/min-cost-climbing-stairs/1.这一题虽然说简单,但是还真不太容易想到

动归五部曲

1.确定dp数组以及下标的含义:dp[i]表示踏上该楼梯的最小花费(不包括当前楼梯的花费)

2.确定递推公式:dp[i] = min((dp[i-1] + cost[i]), (dp[i-2] + cost[i]));

3.dp数组如何初始化:dp[0] = cost[0], dp[1] = cost[1],这里就不是简单的直接加了,而且后续因为长度只有costSize,和题目要求的顶部还差一点,所以需要再求一次

4.确定遍历顺序:从前往后遍历

5.举例推导:无

#define min(a, b) (((a) < (b)) ? (a) :(b))
int minCostClimbingStairs(int* cost, int costSize) {int *dp = (int *)malloc(sizeof(int) * costSize);dp[0] = cost[0];dp[1] = cost[1];for (int i = 2; i < costSize; i++) {dp[i] = min((dp[i-1] + cost[i]), (dp[i-2] + cost[i]));}int res = min(dp[costSize-2], dp[costSize-1]);return res;
}

http://www.lryc.cn/news/511818.html

相关文章:

  • 爱思唯尔word模板
  • 每日一题 354. 俄罗斯套娃信封问题
  • ASP.net网站的注册、登录和密码修改的操作详解
  • 2024.12.29(进程线程实现并发服务器)
  • 如何在 Ubuntu 上安装 PyTorch
  • 8-Gin 中间件 --[Gin 框架入门精讲与实战案例] 【文末有测试代码】
  • 【潜意识Java】深入详细理解分析Java中的toString()方法重写完整笔记总结,超级详细。
  • 【论文笔记】Contrastive Learning for Sign Language Recognition and Translation
  • Gitlab17.7+Jenkins2.4.91实现Fastapi/Django项目持续发布版本详细操作(亲测可用)
  • 一起来看--红黑树
  • SpringBoot整合篇 05、Springboot整合Redission
  • 供应链系统设计-供应链中台系统设计(六)- 商品中心概念篇
  • 胡闹厨房练习(三)
  • 关于ESD(静电放电)等级的划分
  • 探究步进电机与输入脉冲的关系
  • 基于YOLOV5+Flask安全帽RTSP视频流实时目标检测
  • Windows内置的服务器IIS(Internet Information Services)托管网站
  • 虚幻引擎结构之UObject
  • js的Reflect对象
  • this指向了谁?
  • 基于Resnet、LSTM、Shufflenet及CNN网络的Daily_and_Sports_Activities数据集仿真
  • mac系统vsCode中使用Better Comments在.vue文件里失效
  • UE5.3 C++ Ceiusm中的POI 制作3DUI 结合坐标转化
  • 一起学Git【第六节:查看版本差异】
  • numpy np.newaxis介绍
  • 小程序配置文件 —— 16 项目配置文件和配置 sass
  • 【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄
  • 概率统计与随机过程--作业5
  • “802.11g”,“802.11n”,“802.11ac”,“802.11ax”
  • Kubernetes 常用的网络插件