当前位置: 首页 > news >正文

PointPillars:数据预处理

在 PointPillars 算法中,将点云划分为点柱(Pillars)是核心步骤之一,用于将稀疏点云数据转换为规则的张量表示,方便后续 2D 卷积操作。以下是点云划分为点柱的具体方法和实现步骤:


1. 点云划分为网格

将 3D 空间划分为规则的网格,形成柱状区域(Pillars)。

操作步骤:
  1. 定义网格范围和分辨率

    • 确定点云的空间范围,例如:
      X min , X max , Y min , Y max , Z min , Z max X_{\text{min}}, X_{\text{max}}, Y_{\text{min}}, Y_{\text{max}}, Z_{\text{min}}, Z_{\text{max}} Xmin,Xmax,Ymin,Ymax,Zmin,Zmax
    • 设置网格分辨率(Pillar 尺寸):
      Δ X , Δ Y \Delta X, \Delta Y ΔX,ΔY
      例如,每个 Pillar 的大小为 0.16 × 0.16 m 0.16 \times 0.16 \, \text{m} 0.16×0.16m
  2. 计算网格索引

    • 对每个点 ( x , y , z ) (x, y, z) (x,y,z),计算其在网格中的索引:
      u = ⌊ x − X min Δ X ⌋ , v = ⌊ y − Y min Δ Y ⌋ u = \lfloor \frac{x - X_{\text{min}}}{\Delta X} \rfloor, \quad v = \lfloor \frac{y - Y_{\text{min}}}{\Delta Y} \rfloor u=ΔXxXmin,v=ΔYyYmin
    • u , v u, v u,v 分别是点在 X X X Y Y Y 方向上的网格索引。

2. 构建 Pillar 数据结构

每个 Pillar 中包含若干点的特征(点云数据是稀疏的,因此部分 Pillar 可能没有点)。

操作步骤:
  1. 点分组

    • 将所有点根据其网格索引分配到对应的 Pillar 中。
    • 例如,第 ( u , v ) (u, v) (u,v) 个 Pillar 包含所有满足条件的点:
      P pillar ( u , v ) = { ( x , y , z , i ) ∣ 点的索引为  ( u , v ) } P_{\text{pillar}}(u, v) = \{ (x, y, z, i) \mid \text{点的索引为 } (u, v) \} Ppillar(u,v)={(x,y,z,i)点的索引为 (u,v)}
  2. 固定点数量

    • 为了适配神经网络,每个 Pillar 中的点数量固定为 N max N_{\text{max}} Nmax
      • 如果点数超过 N max N_{\text{max}} Nmax,随机采样。
      • 如果点数不足 N max N_{\text{max}} Nmax,用零点填充。
  3. 特征提取
    对每个点提取以下特征:

    • ( x , y , z , i ) (x, y, z, i) (x,y,z,i):点的原始坐标和反射强度。
    • 相对坐标(相对于 Pillar 中心的偏移量):
      Δ x = x − x pillar center , Δ y = y − y pillar center \Delta x = x - x_{\text{pillar center}}, \quad \Delta y = y - y_{\text{pillar center}} Δx=xxpillar center,Δy=yypillar center
  4. 形成固定维度的张量

    • 对每个 Pillar,构造 N max × D N_{\text{max}} \times D Nmax×D 的特征矩阵,其中 D D D 是特征维度(例如,原始坐标 + 相对坐标 + 强度)。

3. BEV (Bird’s Eye View) 特征图

将所有 Pillar 的特征投影到 BEV 平面,形成伪影像特征图。

操作步骤:
  1. 初始化 BEV 特征图

    • 创建一个固定大小的张量 ( H , W , C ) (H, W, C) (H,W,C),对应网格的高度、宽度和通道数。
      • H = X max − X min Δ X H = \frac{X_{\text{max}} - X_{\text{min}}}{\Delta X} H=ΔXXmaxXmin
      • W = Y max − Y min Δ Y W = \frac{Y_{\text{max}} - Y_{\text{min}}}{\Delta Y} W=ΔYYmaxYmin
  2. 填充特征图

    • 对于每个 Pillar,将其特征向量映射到特定网格单元的通道维度中。
  3. 零填充

    • 如果某些网格单元没有对应的 Pillar,用零填充。

代码实现示例

以下是一个简单的 Python 实现框架:

import numpy as npdef create_pillars(point_cloud, grid_size, pillar_size, max_points_per_pillar):"""将点云划分为点柱 (Pillars) 并提取特征。Args:point_cloud: (N, 4) 点云数据,包含 (x, y, z, intensity)grid_size: [x_min, x_max, y_min, y_max]pillar_size: [pillar_x_size, pillar_y_size]max_points_per_pillar: 每个 Pillar 的最大点数Returns:pillars: (num_pillars, max_points_per_pillar, feature_dim)"""x_min, x_max, y_min, y_max = grid_sizepillar_x_size, pillar_y_size = pillar_size# 筛选点云范围内的点mask = (point_cloud[:, 0] >= x_min) & (point_cloud[:, 0] < x_max) & \(point_cloud[:, 1] >= y_min) & (point_cloud[:, 1] < y_max)points = point_cloud[mask]# 计算网格索引x_indices = np.floor((points[:, 0] - x_min) / pillar_x_size).astype(int)y_indices = np.floor((points[:, 1] - y_min) / pillar_y_size).astype(int)# 按索引分组点num_pillars = (x_max - x_min) // pillar_x_size * (y_max - y_min) // pillar_y_sizepillars = np.zeros((num_pillars, max_points_per_pillar, 7))  # [x, y, z, intensity, delta_x, delta_y, delta_z]for i, (x_idx, y_idx) in enumerate(zip(x_indices, y_indices)):pillar_idx = x_idx * y_max + y_idx  # Pillar 的一维索引if len(pillars[pillar_idx]) < max_points_per_pillar:delta_x = points[i, 0] - (x_idx * pillar_x_size + pillar_x_size / 2)delta_y = points[i, 1] - (y_idx * pillar_y_size + pillar_y_size / 2)pillars[pillar_idx].append([*points[i, :4], delta_x, delta_y, points[i, 2]])return pillars

实践优化

  1. GPU 加速:使用 CUDA 或 TensorFlow/PyTorch 操作处理点云。
  2. 稀疏优化:利用稀疏张量库减少计算成本。
  3. 并行化:在点划分和特征提取阶段进行并行处理。
http://www.lryc.cn/news/509386.html

相关文章:

  • node.js的异步工作之---回调函数与回调地狱
  • Mac Android studio 升级LadyBug 版本,所产生的bug
  • stm32 hex文件烧写
  • 【编译原理】编译原理知识点汇总·属性文法和语法制导翻译
  • 【unity c#】深入理解string,以及不同方式构造类与反射的性能测试(基于BenchmarkDotNet)
  • VSCode 插件开发实战(八):创建和管理任务 Task
  • 在 Node.js 中正确处理 `async/await` 及数组迭代
  • 本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——13使用Resnet-Bin
  • FFmpeg第三话:FFmpeg 视频解码详解
  • 解决 vue3 中 echarts图表在el-dialog中显示问题
  • C++ OpenGL学习笔记(4、绘制贴图纹理)
  • 关于我的Java考试被老师挂掉的这件事......
  • Websocket客户端从Openai Realtime api Sever只收到部分数据问题分析
  • Unity 6 中的新增功能
  • [ComfyUI]颜色提取插件,Flux专属,让出图更加可控
  • 【magic-dash】01:magic-dash创建单页面应用及二次开发
  • ChatGPT等大语言模型与水文水资源、水环境领域的深度融合
  • 机器学习连载
  • linux查看天气预报
  • minikube start --driver=docker --force
  • 游戏引擎学习第58天
  • 我用火语言RPA生成EXE可执行文件,并使用激活码对EXE进行管理
  • 【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
  • 32位MCU主控智能电表方案
  • ConstraintLayout是完美的布局吗?
  • 39.在 Vue3 中使用 OpenLayers 导出 GeoJSON 文件及详解 GEOJSON 格式
  • Feign的调用demo 和 EnableFeignClients的包名
  • 简化开发流程:如何通过 JDBC 自动生成符合 Java 命名规范的实体类
  • W25Q128存储器详解
  • Vite系列课程 | 11. Vite 配置文件中 CSS 配置(Modules 模块化篇)