当前位置: 首页 > news >正文

应用高次、有理代数式为AI生成亚对称图像

原创:daode1212(daode3056)

        本文定义不完全对称的图像叫亚对称图像,因为全对称的太过机械,不符合人工的特点,本人基于二元高次的有理式,生成时引入N个随机数分A,B两个组,再通过指针对画布所有像素高速扫描生成三个类别的图像。这些奇异的图像、图案可广泛应用于纺织、工艺、陶瓷、铁艺、瓷砖等行业的图像自动生成,也为AI自动生成图像添加了新元素、新算法,截图如下:

C# 源代码如下:

// Asymmetric solution space (RGB, black and white, root curve).n344:
// By Daode3056, 2024-12-24
unsafe void button344_Click(object sender, EventArgs e)
{int ordeNum = 6; // The highest power of the polynomialint K = 40; // Refinement coefficientint width = 16 * K, height = 16 * K;Bitmap img = new Bitmap(width, height);float dlt = 1f / K; // Differential stepvar RD = new Random();string pStr = "";// Generate random arrays: ===================================  double[] A = new double[ordeNum]; double[] B = new double[ordeNum];for (int i = 0; i < ordeNum; i++){A[i] = 21 * RD.NextDouble();pStr += string.Format("{0:0.00}", A[i]) + "|";}pStr += "\r\n";for (int i = 0; i < ordeNum; i++){B[i] = 21 * RD.NextDouble();pStr += string.Format("{0:0.00}", B[i]) + "|";}// Define bitmap data, pointer object: =====================================BitmapData data = img.LockBits(new Rectangle(0, 0, width, height),ImageLockMode.ReadWrite,System.Drawing.Imaging.PixelFormat.Format24bppRgb);var ptr = (byte*)data.Scan0.ToPointer();// Binary high-order polynomial calculation function: =====================================Func<double, double, double> ploy = (double x, double y) =>{double xx = x * x; double yy = y * y;double fx = 1; double fy = 1;double retV = 0;//for (int i = 0; i < ordeNum; i++)//{//    fx *= (xx - A[i])*(y - A[i])/(x - A[i]);//    fy *= (yy - B[i])*(y - B[i])/(x - B[i]);//}for (int i = 0; i < ordeNum; i++){fx *= (y - A[i]) * (x - B[i]) * (xx - A[i]);fy *= (y - B[i]) * (x - A[i]) * (yy - B[i]);}if (fx != 0 && fy != 0){retV = x * fy / fx - y * y * fx / fy;}return Math.Abs(retV);};// Pointer operation, generate bitmap: ========================int idx = RD.Next(3);for (int i = 0; i < data.Height - 60; i++){for (int j = 0; j < data.Width; j++){float x = (i - width / 2 + 30) / (float)K;float y = (j - height / 2) / (float)K;//====================double z0 = Math.Log(ploy(x, y));if (idx == 0){// RGB image:if (z0 < 3){ptr[i * data.Stride + j * 3] = (byte)(127 - 127 * Math.Cos(z0 / 1.23));ptr[i * data.Stride + j * 3 + 1] = (byte)(127 + 127 * Math.Cos(z0 / 2.19));ptr[i * data.Stride + j * 3 + 2] = (byte)(127 + 127 * Math.Cos(z0 / 3.31));}}if (idx == 1){// Black and white image:if (z0 < 5){ptr[i * data.Stride + j * 3] = (byte)(127 + 127 * Math.Cos(z0) > 127 ? 255 : 0);ptr[i * data.Stride + j * 3 + 1] = (byte)(127 + 127 * Math.Cos(z0) > 127 ? 255 : 0);ptr[i * data.Stride + j * 3 + 2] = (byte)(127 + 127 * Math.Cos(z0) > 127 ? 255 : 0);}}if (idx == 2){// Equation root finding: ====================double z1 = ploy(x - dlt, y);double z2 = ploy(x + dlt, y);double z3 = ploy(x, y - dlt);double z4 = ploy(x, y + dlt);//=========================if (z1 * z2 < 100 || z3 * z4 < 100){ptr[i * data.Stride + j * 3] = (byte)(127 - 127 * Math.Cos(z0 / 137) > 127 ? 255 : 0);ptr[i * data.Stride + j * 3 + 1] = (byte)(127 - 127 * Math.Cos(z0 / 137) > 127 ? 255 : 0);ptr[i * data.Stride + j * 3 + 2] = (byte)(127 - 127 * Math.Cos(z0 / 137) > 127 ? 255 : 0);}else{ptr[i * data.Stride + j * 3] = (byte)255;ptr[i * data.Stride + j * 3 + 1] = (byte)255;ptr[i * data.Stride + j * 3 + 2] = (byte)255;}}}}img.UnlockBits(data);// Bitmap drawing tool:Graphics gs = Graphics.FromImage(img);Pen pen0 = new Pen(Color.FromArgb(0, 0, 60), 2);Brush bh = new SolidBrush(Color.White);gs.DrawString("["+idx+"]"+pStr, new Font("SimHei", 11), bh, 15 * K - pStr.Length * 5, height - 50);pictureBox1.Image = img;img.Save("button34_"+ string.Format("{0:X}",RD.Next(0xFFFFFF)) +".png");
}

http://www.lryc.cn/news/509124.html

相关文章:

  • 潜在狄利克雷分配LDA 算法深度解析
  • [x86 ubuntu22.04]双触摸屏的触摸事件都响应在同一个触摸屏上
  • 重温设计模式--代理模式
  • 一些elasticsearch重要概念与配置参数
  • leetcode 面试经典 150 题:螺旋矩阵
  • JAVA AOP简单实践(基于SpringBoot)
  • java agent的使用【通俗易懂版】
  • 大模型学习指南
  • 单片机:实现定时器中断(数码管读秒+LED闪烁)(附带源码)
  • STM32单片机芯片与内部33 ADC 单通道连续DMA
  • 【0376】Postgres内核 分配 last safe MultiXactId
  • php时间strtotime函数引发的问题 时间判断出错
  • Kibana:LINUX_X86_64 和 DEB_X86_64两种可选下载方式的区别
  • 【LeetCode每日一题】 LeetCode 151.反转字符串中的单词
  • gitlab克隆仓库报错fatal: unable to access ‘仓库地址xxxxxxxx‘
  • 在已有vue cli项目中添加单元测试配置
  • 企业级NoSql数据库REDIS集群
  • HTML与数据抓取:GET与POST方法详解
  • 【es6复习笔记】模板字符串(3)
  • cursor保存更改操作技巧
  • ASP.NET |日常开发中定时任务详解
  • 【零基础保姆级教程】制作自己的数据集(二)——Labelme的安装与使用及常见的报错解决方法
  • Move AI技术浅析(二):输入与预处理
  • 实践KDTS-WEB从mysql迁移到kingbasev9
  • WebGIS实战开源项目:智慧机场三维可视化(学习笔记)
  • 2025年PMP项目管理考试时间一览表
  • 20241224在ubuntu20.04.6下的终端分屏软件terminator的安装以及使用
  • 打造高效租赁小程序让交易更便捷
  • 光谱相机在农业中的具体应用案例
  • Linux RTC 驱动框架