当前位置: 首页 > news >正文

前景物体提取

参考:精选课:C++完整的实现双目摄像头图像采集、双目摄像头畸变矫正、前景物体提取、生成视差图、深度图、PCL点云图

前景物体提取是计算机视觉中的一个重要技术,可以用于视频监控、虚拟现实和计算机视觉等领域。

1.前景物体提取的原理

前景物体提取是将摄像机拍摄到的图像中的前景物体(如移动的人、车辆等)从背景中分离出来的过程。其原理是利用帧间差分和背景建模两个步骤。帧间差分是通过相邻帧之间像素点灰度值的差异来检测出运动目标,背景建模是通过不断更新背景图像来适应场景的变化。

2.实现步骤

步骤1:读取摄像机视频并初始化,使用OpenCV库来读取摄像机视频:

cv::VideoCapture cap(0);
if (!cap.isOpened()) {std::cout << "Cannot open camera" << std::endl;return -1;
}cv::Mat frame;
cap.read(frame);

步骤2:背景建模,定义一个背景图像和一个学习率,初始值为0.01。在每一帧中,将当前帧与背景图像相减,得到一个差分图像。

cv::Mat background;
double learning_rate = 0.01;// 第一帧作为背景图像
background = frame.clone();// 对于后面的帧,逐像素地计算背景图像
while (true) {cap.read(frame);// 将当前帧与背景图像相减,得到一个差分图像cv::Mat diff;cv::absdiff(frame, background, diff);// 根据差分图像更新背景图像for (int i = 0; i < diff.rows; i++) {for (int j = 0; j < diff.cols; j++) {cv::Vec3b pixel = diff.at<cv::Vec3b>(i, j);if (pixel[0] > 50 || pixel[1] > 50 || pixel[2] > 50) {// 更新背景像素cv::Vec3b background_pixel = background.at<cv::Vec3b>(i, j);cv::Vec3b frame_pixel = frame.at<cv::Vec3b>(i, j);background_pixel[0] = (1 - learning_rate) * background_pixel[0] + learning_rate * frame_pixel[0];background_pixel[1] = (1 - learning_rate) * background_pixel[1] + learning_rate * frame_pixel[1];background_pixel[2] = (1 - learning_rate) * background_pixel[2] + learning_rate * frame_pixel[2];background.at<cv::Vec3b>(i, j) = background_pixel;}}}
}

步骤3:帧间差分,将当前帧与背景图像相减,得到差分图像。然后将差分图像进行二值化处理,得到前景物体掩模。

// 帧间差分
cv::Mat diff;
cv::absdiff(frame, background, diff);// 二值化处理,得到前景掩模
cv::Mat foreground_mask;
cv::threshold(diff, foreground_mask, 50, 255, cv::THRESH_BINARY);

步骤4:过滤掉小的前景物体,使用形态学操作对前景掩模进行处理,去除噪声和小物体。

// 使用开运算去除噪声和小物体
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5, 5));
cv::Mat foreground_mask_filtered;
cv::morphologyEx(foreground_mask, foreground_mask_filtered, cv::MORPH_OPEN, kernel);

步骤5:显示结果,将原始图像和前景掩模相乘,得到只有前景物体的图像。

// 显示结果
cv::Mat result = frame.clone();
cv::Mat foreground_image = cv::Mat::zeros(frame.size(), frame.type());
frame.copyTo(foreground_image, foreground_mask_filtered);cv::imshow("Original Image", frame);
cv::imshow("Foreground Mask", foreground_mask_filtered);
cv::imshow("Foreground Image", foreground_image);cv::waitKey(30);

3.完整代码

演示了对单个摄像头的前景物体提取,双目摄像机需要对两个摄像头的同一幅图片场景分别做前景物体提取,然后作为左右视图对其进行进一步畸变矫正。

#include <iostream>
#include <opencv2/opencv.hpp>int main() {// 打开摄像机cv::VideoCapture cap(0);if (!cap.isOpened()) {std::cout << "Cannot open camera" << std::endl;return -1;}// 初始化cv::Mat frame;cap.read(frame);// 背景建模cv::Mat background;double learning_rate = 0.01;background = frame.clone();while (true) {// 读取帧cap.read(frame);// 背景建模cv::Mat diff;cv::absdiff(frame, background, diff);for (int i = 0; i < diff.rows; i++) {for (int j = 0; j < diff.cols; j++) {cv::Vec3b pixel = diff.at<cv::Vec3b>(i, j);if (pixel[0] > 50 || pixel[1] > 50 || pixel[2] > 50) {cv::Vec3b background_pixel = background.at<cv::Vec3b>(i, j);cv::Vec3b frame_pixel = frame.at<cv::Vec3b>(i, j);background_pixel[0] = (1 - learning_rate) * background_pixel[0] + learning_rate * frame_pixel[0];background_pixel[1] = (1 - learning_rate) * background_pixel[1] + learning_rate * frame_pixel[1];background_pixel[2] = (1 - learning_rate) * background_pixel[2] + learning_rate * frame_pixel[2];background.at<cv::Vec3b>(i, j) = background_pixel;}}}// 帧间差分cv::Mat diff2;cv::absdiff(frame, background, diff2);cv::Mat foreground_mask;cv::threshold(diff2, foreground_mask, 50, 255, cv::THRESH_BINARY);// 去除噪声和小物体cv::Mat kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5, 5));cv::Mat foreground_mask_filtered;cv::morphologyEx(foreground_mask, foreground_mask_filtered, cv::MORPH_OPEN, kernel);// 显示结果cv::Mat result = frame.clone();cv::Mat foreground_image = cv::Mat::zeros(frame.size(), frame.type());frame.copyTo(foreground_image, foreground_mask_filtered);cv::imshow("Original Image", frame);cv::imshow("Foreground Mask", foreground_mask_filtered);cv::imshow("Foreground Image", foreground_image);cv::waitKey(30);}// 释放资源cap.release();cv::destroyAllWindows();return 0;
}
http://www.lryc.cn/news/505310.html

相关文章:

  • Kotlin复习
  • 【AI日记】24.12.17 kaggle 比赛 2-6 | 把做饭看成一种游戏 | 咖喱牛肉
  • 操作系统(14)请求分页
  • uniapp navigateTo、redirectTo、reLaunch等页面路由跳转方法的区别
  • 模型 A/B测试(科学验证)
  • 谷歌发布升级版AI视频生成器Veo 2与图像生成器Imagen 3
  • 快速掌握源码部署Filebeat
  • C++ 哈希表封装unordered_map 和 unordered_set
  • pymysql 入门
  • Leecode刷题C++之形成目标字符串需要的最少字符串数①
  • Linux应用开发————mysql数据库
  • 4_使用 HTML5 Canvas API (3) --[HTML5 API 学习之旅]
  • docker build次数过多,导致磁盘内存不足:ERROR: no space left on device
  • LDO和DC-DC的区别、DCDC和LDO主要指标
  • LeetCode hot100-81
  • RTMP、RTSP、RTP、HLS、MPEG-DASH协议的简介,以及应用场景
  • 力扣-图论-15【算法学习day.65】
  • “AI智慧数字孪生系统:开启智能新纪元
  • 54、库卡机器人轴的软限位设置
  • 基于MATLAB 的数字图像处理技术总结
  • Android运行低版本项目可能遇到的问题
  • window.getSelection() 获取划线内容并实现 dom 追随功能
  • 【人工智能】基于Python的自然语言处理:深入实现文本相似度计算
  • 布局、组成部分
  • Go, Jocko, Kafka
  • CANoe 报文仿真
  • 升级thinkphp8最新版本,升级后发现版本不变
  • 工业大数据分析算法实战-day07
  • 六、nginx负载均衡
  • 鸿蒙项目云捐助第十一讲鸿蒙App应用的捐助成功自定义对话框组件实现