当前位置: 首页 > news >正文

auto-gptq安装以及不适配软硬件环境可能出现的问题及解决方式

目录

    • 1、auto-gptq是什么?
    • 2、auto-gptq安装
    • 3、auto-gptq不正确安装可能会出现的问题
      • (1)爆出:`CUDA extension not installed.`
      • (2)没有报错但是推理速度超级慢

1、auto-gptq是什么?

Auto-GPTQ 是一种专注于 量化深度学习模型 的工具库。它的主要目标是通过量化技术(Quantization)将大型语言模型(LLM)等深度学习模型的大小和计算复杂度显著减少,从而提高推理效率,同时尽可能保持模型的性能。

2、auto-gptq安装

在Linux和Windows上,AutoGPTQ可以通过预先构建的轮子为特定的PyTorch版本安装:

AutoGPTQ versionCUDA/ROCm versionInstallationBuilt against PyTorch
latest (0.7.1)CUDA 11.8pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.2.1+cu118
latest (0.7.1)CUDA 12.1pip install auto-gptq2.2.1+cu121
latest (0.7.1)ROCm 5.7pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm571/2.2.1+rocm5.7
0.7.0CUDA 11.8pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.2.0+cu118
0.7.0CUDA 12.1pip install auto-gptq2.2.0+cu121
0.7.0ROCm 5.7pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm571/2.2.0+rocm5.7
0.6.0CUDA 11.8pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.1.1+cu118
0.6.0CUDA 12.1pip install auto-gptq==0.6.02.1.1+cu121
0.6.0ROCm 5.6pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm561/2.1.1+rocm5.6
0.5.1CUDA 11.8pip install auto-gptq==0.5.1 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.1.0+cu118
0.5.1CUDA 12.1pip install auto-gptq==0.5.12.1.0+cu121
0.5.1ROCm 5.6pip install auto-gptq==0.5.1 --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm561/2.1.0+rocm5.6

AutoGPTQ is not available on macOS.
注意:安装的auto-gptq版本必须与CUDA和pytorch版本都适配,安装完之后推理速度很慢可能是需要从源码安装

3、auto-gptq不正确安装可能会出现的问题

(1)爆出:CUDA extension not installed.

在这里插入图片描述

这个问题我一直以为是CUDA和pytorch没配置好,或者不适配硬件,甚至以为是没有安装cudnn的原因,但最后发现原来是安装的auto-gptq不适配当下环境。

注意按照上面的方法安装auto-gptq仍然可能报错或者不适配,此时应该从源码安装,可以参考教程AutoGPTQ/README_zh.md at main · AutoGPTQ/AutoGPTQ,或者解决 GPTQ 模型导入后推理生成 Tokens 速度很慢的问题(从源码重新安装 Auto-GPTQ)_auto gptq 源码构建非cuda版本-CSDN博客

以下摘自官方文档
克隆源码:

git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ

然后,从项目目录安装:

pip install .

正如在快速安装一节,你可以使用 BUILD_CUDA_EXT=0 来取消构建 cuda 拓展。

如果你想要使用 triton 加速且其能够被你的操作系统所支持,请使用 .[triton]

对应 AMD GPUs,为了从源码安装以支持 RoCm,请设置 ROCM_VERSION 环境变量。同时通过设置
PYTORCH_ROCM_ARCH
(reference)
可提升编译速度,例如:对于 MI200 系列设备,该变量可设为 gfx90a。例子:

ROCM_VERSION=5.6 pip install .

对于 RoCm 系统,在从源码安装时额外需要提前安装以下包:rocsparse-dev, hipsparse-dev,
rocthrust-dev, rocblas-dev and hipblas-dev

(2)没有报错但是推理速度超级慢

此时查看auto-gptq版本,如果版本后没有带cu1xx,则可能是需要从源码安装

http://www.lryc.cn/news/503386.html

相关文章:

  • 【R语言】基础知识
  • 【一本通】虫洞
  • python爬虫--小白篇【爬虫实践】
  • Unity背包道具拖拽(极简版实现)
  • spark读取普通文件
  • MySQL SQL语句性能优化
  • 【蓝桥杯每日一题】技能升级
  • css 实现在一条线上流动小物体(offset-path)
  • 探索 Robyn 框架 —— 下一代高性能 Web 框架
  • STL容器-map P3613【深基15.例2】寄包柜 普及-
  • 【MySQL 进阶之路】了解 性能优化 与 设计原则
  • MySQL之数据库三大范式
  • [大数据]Hudi
  • jenkins harbor安装
  • JavaScript 高级特性与 ES6 新特性:正则表达式的深度探索
  • 正则表达式——参考视频B站《奇乐编程学院》
  • 【FFmpeg】FFmpeg 内存结构 ⑥ ( 搭建开发环境 | AVPacket 创建与释放代码分析 | AVPacket 内存使用注意事项 )
  • 【多模态文档智能】OCR-free感知多模态大模型技术链路及训练数据细节
  • Mybatis动态sql执行过程
  • leetcode 31 Next Permutation
  • 每日一练 | 华为 eSight 创建的缺省角色
  • PyTorch基本使用-自动微分模块
  • libevent-Reactor设计模式【1】
  • 奇奇怪怪的错误-Tag和space不兼容
  • 29.攻防世界ics-06
  • 强化学习路径规划:基于SARSA算法的移动机器人路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码
  • 【MFC】如何读取rtf文件并进行展示
  • Vulhub:Log4j[漏洞复现]
  • 面向预测性维护的TinyML技术栈全面综述
  • 沈阳理工大学《2024年811自动控制原理真题》 (完整版)