当前位置: 首页 > news >正文

Ubuntu24.04配置STMTrack

项目地址:https://github.com/fzh0917/STMTrack

一、安装 CUDA

参考链接:
Ubuntu24.04配置DINO-Tracker
Ubuntu多CUDA版本安装及切换
由于之前在其他项目中已经安装了 CUDA12.1,这次需要安装另一个版本。

1. 查看安装版本

按照 requirement.txt 中的要求,CUDA的版本为10.0,torch版本高于1.4。在 pytorch 官网上查看对应版本:
在这里插入图片描述
这里可以看到 pytorch1.4 对应 torchvision0.5,对应 CUDA10.1。

2. 安装CUDA

1) 下载安装包

下载地址: https://developer.nvidia.com/cuda-toolkit
历史版本下载地址: https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述
依次执行两条指令。
安装过程中如果提示 gcc 版本不匹配导致安装失败,需要在指令后添加--override
安装过程中注意不安装驱动,提示“A symlink already exists at /usr/local/cuda. Update to this installation?”选择 No。

2) 创建软链接

参考链接:
anzhuang
Ubuntu多CUDA版本安装及切换
由于我电脑中已经存在了一个 12.1 版本,CUDA 软链接是指向 12.1 的。上面那个选项选了 yes 会改变 CUDA 的软链接。

  1. 查看当前使用的 CUDA版本
    /usr/local路径下通过stat cuda命令查看当前使用的 CUDA 版本:
  2. 删除原本的 CUDA 软链接
sudo rm -rf /usr/local/cuda
  1. 建立新的指向 CUDA-10.1 的软链接
sudo ln -s /usr/local/cuda-10.1 /usr/local/cuda
  1. 重新查看当前 CUDA 版本
    在这里插入图片描述

  2. 检查是否添加到环境变量

sudo gedit ~/.bashrc

在最后确认有没有下面这几行内容

export PATH=/usr/local/cuda/bin:$PATH  
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda

如果没有,将其添加到~/.bashrc的最后,然后运行命令

source ~/.bashrc

使配置的环境变量生效。

3. 安装 cudnn

1) 下载对应版本cudnn

官网
在这里插入图片描述

2) cd到cudnn所在的文件夹下进行解压等操作:

tar -zxvf cudnn-10.0-linux-x64-v7.4.2.24.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include/ 
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64/ 
sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*cd /usr/local/cuda-10.0/lib64/
sudo ln -sf libcudnn.so.7.4.2 libcudnn.so.7

4. 新建环境

conda create -n STMTrack python=3.7 -y
conda activate STMTrack

二、安装 torch

参考链接:

  1. Ubuntu18.04+Cuda10.1+Python3.6 下安装 PyTorch1.4.0+torchvision0.5.0,成功安装torch1.4.0和torchvision并解决安装速度过慢
  2. ubuntu linux安装pytorch和torchvision

1. 添加镜像源安装(失败)

在这里插入图片描述

2. 使用 whl 文件安装(成功)

1) 下载镜像

镜像网址:https://download.pytorch.org/whl/torch_stable.html
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2) 安装

在whl文件目录打开终端,输入:

pip install torch-1.4.0+cu100-cp36-cp36m-linux_x86_64.whlpip install torchvision-0.5.0+cu100-cp36-cp36m-linux_x86_64.whl

在这里插入图片描述

3) 检查是否安装成功

pythonimport torch
print(torch.version.cuda)
print(torch.backends.cudnn.version())

三、安装其他库

在项目地址打开终端,运行:

pip install -r requirements.txt

四、实验设置

参考链接:

  1. 把STMTrack跑起来
  2. CVPR2021跟踪算法STMTrack的配置

1. 预训练模型下载

在got上训练的https://drive.google.com/file/d/1AT6SAieig8oNQ-MJ6dUhCfgYCyJEdxfj/view
在全部数据集上训练的https://drive.google.com/file/d/1w7nhGZR53FQnh3fVbIcbj08hxa2Zjvub/view
将下载的预训练模型放入工程目录下新建的pretrain_model路径中

2. 其他设置

  1. STMTrack-main/experiments/stmtrack/test/目录下对 otb,uav,got 等数据集进行配置,以 uav 为例,打开STMTrack/experiments/stmtrack/test/UAV123/stmtrack-googlenet-uav123.yaml
    1). 更改预训练模型所在路径
    pretrain_model_path: "/root/STMTrack/epoch-19_fulldata.pkl" ,注意冒号与双引号之间有一个空格,提醒一下,要看一下原来文件中的与训练文件写的是 fulldata.pk1 还是 gotdata.pk1,改成对应文件的路径
    2). 更改 device_num
    好像是可用于计算任务的 GPU 数量,这里原代码中为10,我改为了1,可以通过以下方式在终端查询:
python
import torch
print(torch.cuda.device_count())

在这里插入图片描述
3). 添加数据集所在路径
在yaml 文件的最后一行添加数据集的路径 data_root: “数据集的绝对路径”
在这里插入图片描述
4). 下载 uav123.json 和 lasot.json
链接:git clone https://github.com/megvii-research/video_analyst/tree/master/videoanalyst/evaluation/got_benchmark/datasets 。
下载好后放入/videoanalyst/evaluation/got_benchmark/datasets

3.测试代码

在终端输入:

python main/test.py --config testing_dataset_config_file_path

或直接在test.py中添加默认 config 路径。

五、问题

RuntimeError: CUDA error: no kernel image is available for execution on the device

经过查阅,大部分帖子都说是 CUDA 版本和 torch 版本不匹配造成的,但我这个应该是匹配的:

python
import torch
print(torch.__version__)
# 显示torch和cuda版本
print(torch.cuda.is_available())
# 显示True

在这里插入图片描述
也有人说是由于算力和 CUDA 不匹配造成的,但是在浏览的过程中发现大家提到的由于算力不匹配导致的 CUDA erroe 似乎会详细提示算力不匹配,但我这里也没有提示,而且输入:

torch.ones((1, 1, 1, 1, 1)).cuda()

输出:

tensor([[[[[1.]]]]], device='cuda:0')

这算是能够调用成功?所以我也不太确定是不是算力问题导致的。按照这位大佬的方法,在 .bashrc 文件中改了算力也没用。

我的显卡为 RTX4090,在浏览的过程中发现有人说 4090 对应的最低 CUDA 版本为 11.8,有人说是 11.7, 在官方文档中查看 CUDA 与 算力的对应关系,没看懂,似乎是与 cudnn 有关?但是这个问题我始终不知道怎么改,抱着试试的心态重新配置了一个环境 CUDA11.7+torch1.13.0+torchvision0.14.0,配置完成后直接运行 test.py,成功。
在这里插入图片描述

http://www.lryc.cn/news/502087.html

相关文章:

  • 【Java学习笔记】Map接口和常用方法
  • uniapp支持App横竖屏开发总结
  • 【工作笔记】Lombok版本变化导致的反序列化异常
  • 多模态大语言模型 MLLM 部署微调实践
  • LNMP和Discuz论坛
  • Cadence学习笔记 2 PCB封装绘制
  • 网络安全——防火墙
  • 【CSS in Depth 2 精译_074】第 12 章 CSS 排版与间距概述 + 12.1 间距设置(下):行内元素的间距设置
  • 短视频矩阵抖音SEO源码OEM独立部署
  • 使用docker快速部署Nginx、Redis、MySQL、Tomcat以及制作镜像
  • 在ensp中ACL路由控制实验
  • μC/OS-Ⅱ源码学习(3)---事件模型
  • Jmeter进阶篇(30)深入探索 JMeter 监听器
  • 虚幻引擎的工程目录结构
  • 深度学习中的yield
  • 数据库数据恢复—ORACLE常见故障有哪些?如何恢复数据?
  • 使用JavaScrip和HTML搭建一个简单的博客网站系统
  • 算法-字符串-76.最小覆盖子串
  • Python爬虫之Selenium的应用
  • 粉丝生产力与开源 AI 智能名片 2+1 链动模式商城小程序的融合创新与价值拓展
  • 红黑树(Red-Black Tree)
  • Cocos 资源加载(以Json为例)
  • 解决 IntelliJ IDEA 启动错误:插件冲突处理
  • SQL——DQL分组聚合
  • Ripro V5日主题 v8.3 开心授权版 wordpress主题虚拟资源下载站首选主题模板
  • 分布式搜索引擎之elasticsearch基本使用2
  • java学习-第十五章-IO流(java.io包中)
  • 企业如何实现数据从源端到消费端的全链路加工逻辑可视化?
  • Toxicity of the Commons: Curating Open-Source Pre-Training Data
  • Python 单例模式工厂模式和classmethod装饰器