当前位置: 首页 > news >正文

leetcode399:除法求值

给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。

另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。

返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。

注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。

注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。

示例 1:

输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
注意:x 是未定义的 => -1.0

示例 2:

输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]

示例 3:

输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]

提示:

  • 1 <= equations.length <= 20
  • equations[i].length == 2
  • 1 <= Ai.length, Bi.length <= 5
  • values.length == equations.length
  • 0.0 < values[i] <= 20.0
  • 1 <= queries.length <= 20
  • queries[i].length == 2
  • 1 <= Cj.length, Dj.length <= 5
  • Ai, Bi, Cj, Dj 由小写英文字母与数字组成

步骤1:定义题目问题性质

  1. 问题性质

    • 输入
      • equations: 包含已知等式的字符串对列表,如 [["a", "b"], ["b", "c"]]
      • values: 对应每个等式的值列表,如 [2.0, 3.0]
      • queries: 包含待求解问题的字符串对列表,如 [["a", "c"], ["b", "a"]]
    • 输出
      • 对于每个问题,返回相应的结果。无法确定的结果返回 -1.0
  2. 限制条件

    • 1 <= equations.length, queries.length <= 20
    • 每个变量由小写字母和数字组成,长度在 [1, 5] 范围内。
    • 保证无除数为 0 的情况,无矛盾结果。
  3. 潜在边界条件

    • 查询中涉及未定义变量时,应返回 -1.0
    • 对变量自身的查询(如 ["a", "a"]),结果恒为 1.0
    • 可能出现循环关系,如 a/b = 2.0 和 b/a = 0.5

步骤2:算法设计和步骤

此问题本质上是一个 图论问题

  • 每个变量是图的一个节点。
  • 每个等式表示节点之间的边,边权重是等式的值。

解决方法:使用 Floyd-Warshall 算法或 DFS/BFS 构建和查询图。

  1. 图的构建

    • 使用邻接表表示图,存储节点和边权。
    • 将等式 a / b = k 转化为两条边:
      • a -> b,权重为 k
      • b -> a,权重为 1/k
  2. 查询处理

    • 如果两个节点之间有路径,通过图的边权相乘计算结果。
    • 如果两个节点之间无路径,返回 -1.0
  3. 算法步骤

    • 步骤1:构建图。
    • 步骤2:使用深度优先搜索(DFS)处理每个查询:
      • 维护访问记录以防止无限循环。
      • 在路径上累积结果,如果找到目标节点,返回结果。
    • 步骤3:将结果存入列表并返回。
  4. 时间复杂度分析

    • 图构建O(E),其中 E 是等式数量。
    • 每次查询O(V + E),使用 DFS 遍历图。
    • 总体复杂度:O(E + Q * (V + E))Q 是查询数量。

步骤3:详细C++代码

class Solution {
public:vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {// 用邻接表表示图unordered_map<string, unordered_map<string, double>> graph;// 构建图for (int i = 0; i < equations.size(); i++) {string a = equations[i][0];string b = equations[i][1];double value = values[i];graph[a][b] = value;graph[b][a] = 1.0 / value;}// 结果数组vector<double> results;// 对每个查询进行DFSfor (auto& query : queries) {string start = query[0];string end = query[1];// 如果变量不存在,直接返回 -1.0if (graph.find(start) == graph.end() || graph.find(end) == graph.end()) {results.push_back(-1.0);continue;}// 访问记录unordered_set<string> visited;double result = -1.0;if (dfs(graph, start, end, visited, 1.0, result)) {results.push_back(result);} else {results.push_back(-1.0);}}return results;}private:// 深度优先搜索函数bool dfs(unordered_map<string, unordered_map<string, double>>& graph, string current, string target, unordered_set<string>& visited, double current_value, double& result) {// 如果找到目标节点,返回当前累计结果if (current == target) {result = current_value;return true;}// 标记当前节点为已访问visited.insert(current);// 遍历邻接节点for (auto& neighbor : graph[current]) {if (visited.find(neighbor.first) == visited.end()) {if (dfs(graph, neighbor.first, target, visited, current_value * neighbor.second, result)) {return true;}}}// 回溯visited.erase(current);return false;}
};

步骤4:启发

  1. 图论的广泛应用

    • 将关系映射为图,解决复杂的关系查询问题。
  2. DFS 和 BFS 的灵活性

    • DFS 适用于路径累积的问题,而 BFS 更适合求最短路径。
  3. 邻接表的高效性

    • 在稀疏图中,邻接表比矩阵更高效。

步骤5:实际应用

  1. 实际场景:货币汇率转换

    • 问题:给定一些货币汇率,查询两种货币间的转换率。
    • 实现方法
      • 使用货币为节点,汇率为边权,构建图。
      • 对每次转换查询,使用类似算法计算结果。
  2. 其他行业应用

    • 网络传输中的最优路径计算。
    • 化学反应方程中分子质量关系的推导。
http://www.lryc.cn/news/499917.html

相关文章:

  • 【10】MySQL中的加密功能:如何使用MD5加密算法进行数据加密
  • CSS的2D和3D动画效果
  • 30天学会Go--第9天 GO语言 Mysql 学习与实践
  • 跟李笑来学美式俚语(Most Common American Idioms): Part 54
  • Angular由一个bug说起之十一:排序之后无法展开 Row
  • 使用 Flutter 进行移动应用开发:深入探索
  • 2024年天津市职业院校技能大赛高职组 “信息安全管理与评估”样题第三阶段
  • docker批量创建cloudstack虚拟主机脚本
  • npm发布插件到私有仓库保姆级教程
  • WinRAR V7.10纯净体验
  • scss文件内引入其他scss文件报错
  • 1-12 GD32基于定时器输入捕获
  • 前端基础的讲解-JS(22)
  • Minecraft-Datapack数据包开发3-进度与成就
  • 泷羽sec-shell编程(3)
  • 如何解决压测过程中JMeter堆内存溢出问题
  • 爬虫项目基础知识详解
  • uniapp 微信小程序webview 和 h5数据通信
  • SSM01-MyBatis框架(一文学会MyBatis)
  • 【PlantUML系列】状态图(六)
  • JS中重排和重绘的区别是什么?
  • 工业—使用Flink处理Kafka中的数据_ProduceRecord2
  • C 库中的断言与 FreeRTOS 中的 trace 宏
  • JAVAWeb中的Servlet学习
  • docker安装ddns-go(外网连接局域网)
  • 时间复杂度度详解
  • 如何处理和优化大文件上传和下载
  • QT 线程锁
  • 光猫开DMZ教程
  • 分区之间的一种度量方法-覆盖度量(Covering Metric)