当前位置: 首页 > news >正文

11、PyTorch中如何进行向量微分、矩阵微分与计算雅克比行列式

文章目录

  • 1. Jacobian matrix
  • 2. python 代码

1. Jacobian matrix

  • 计算
    f ( x ) = [ f 1 = x 1 2 + 2 x 2 f 2 = 3 x 1 + 4 x 2 2 ] , J = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] = [ 2 x 1 2 3 8 x 2 ] \begin{equation} f(x)=\begin{bmatrix} f_1=x_1^2+2x_2\\\\f_2=3x_1+4x_2^2\end{bmatrix}, J=\begin{bmatrix} \frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}\\\\ \frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2} \end{bmatrix}=\begin{bmatrix} 2x_1&2\\\\3&8x_2\end{bmatrix} \end{equation} f(x)= f1=x12+2x2f2=3x1+4x22 ,J= x1f1x1f2x2f1x2f2 = 2x1328x2
  • 我们假设 x 1 = 1 , x 2 = 2 x_1=1,x_2=2 x1=1,x2=2,可得Jacobian matrix 表示如下:
    J = [ 2 x 1 2 3 8 x 2 ] = [ 2 2 3 16 ] \begin{equation} J=\begin{bmatrix} 2x_1&2\\\\3&8x_2\end{bmatrix}=\begin{bmatrix} 2&2\\\\3&16\end{bmatrix} \end{equation} J= 2x1328x2 = 23216
  • 因为fx为向量,所以在pytorch中一般是没有的,我们需要定义一个标量z
    z = [ 1 1 ] [ f 1 f 2 ] → ∂ z ∂ f = [ 1 1 ] \begin{equation} z=\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}f_1\\\\f_2\end{bmatrix}\to \frac{\partial z}{\partial f}=\begin{bmatrix}1&1\end{bmatrix} \end{equation} z=[11] f1f2 fz=[11]
  • 根据链式法则:
    ∂ z ∂ f ⋅ ∂ f ∂ x = ∂ z ∂ x \begin{equation} \frac{\partial z}{\partial f} \cdot\frac{\partial f}{\partial x}= \frac{\partial z}{\partial x} \end{equation} fzxf=xz
  • 假设我们代入可得:
    ∂ z ∂ f ⋅ ∂ f ∂ x = [ 1 1 ] [ 2 2 3 16 ] = [ 5 18 ] \begin{equation} \frac{\partial z}{\partial f} \cdot\frac{\partial f}{\partial x}= \begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix} 2&2\\\\3&16\end{bmatrix}=\begin{bmatrix}5&18\end{bmatrix} \end{equation} fzxf=[11] 23216 =[518]
  • 根据pytorch中的自动微分,我们可以得到
    ∂ z ∂ x = [ 5 18 ] \begin{equation} \frac{\partial z}{\partial x}=\begin{bmatrix}5&18\end{bmatrix} \end{equation} xz=[518]
  • 小结1:我们用自动微分,是无法像直接用jacobian函数样求解jacobian矩阵,而是因为引入[1,1]向量后,只能求得和值[5,18]
  • 小结2:想用反向传播求得jacobian矩阵,需要将fx中的每一项标量拆开求得,后再叠加在一起

2. python 代码

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :JacobianTest.py
# @Time      :2024/11/25 19:28
# @Author    :Jason Zhang
import torch
from torch import nn
from torch.autograd.functional import jacobiandef funx(x):return torch.stack([x[0] ** 2 + 2 * x[1], 3 * x[0] + 4 * x[1] ** 2])if __name__ == "__main__":run_code = 0in_x = torch.tensor([1.0, 2.0], dtype=torch.float, requires_grad=True)y = funx(in_x)y.backward(torch.ones_like(y))my_jacobian = jacobian(funx, in_x)print(f"my_jacobian=\n{my_jacobian}")x_grad = in_x.gradin_x_ones = torch.ones_like(in_x)jacobian_x_grad = in_x_ones @ my_jacobianprint(f"x_grad={x_grad}")print(f"jacobian_x_grad={jacobian_x_grad}")
my_jacobian=
tensor([[ 2.,  2.],[ 3., 16.]])
x_grad=tensor([ 5., 18.])
jacobian_x_grad=tensor([ 5., 18.])
http://www.lryc.cn/news/491321.html

相关文章:

  • 【软件方案】智慧城市,智慧园区,智慧校园,智慧社区,大数据平台建设方案,大数据中台综合解决方案(word原件)
  • 用js实现点击抽奖
  • Django 自定义路由转换器
  • 【JavaEE初阶】枫叶经霜艳,梅花透雪香-计算机是如何运行的?
  • 破解天然气巡检挑战,构建智能运维体系
  • go web单体项目 学习总结
  • Cocos游戏优化
  • wsl2的Ubuntu18.04安装ros和anaconda
  • 基于迅为RK3568开发板全国产平台,快速实现APP开机自启动技术分享
  • C++网络编程之多播
  • 不只是请求和响应:使用Fiddler抓包URL和Method全指南(中)
  • 学习threejs,使用设置normalMap法向量贴图创建更加细致的凹凸和褶皱
  • Hive构建日搜索引擎日志数据分析系统
  • Vue 3 defineModel: 简化组件的双向绑定
  • 【Flutter】搭建Flutter开发环境,安卓开发
  • Linux中的共享内存
  • SpringBoot中忽略实体类中的某个属性不返回给前端的方法
  • ubuntu 安装proxychains
  • pytorch四种单机多卡分布式训练方法
  • archlinux 触摸板手势配置
  • djinn:1 靶场学习小记
  • kafka消费者组和分区数之间的关系是怎样的?
  • 【go】查询某个依赖是否存在于这个代理
  • 如何从postman中导出所有集合Collection
  • 在 Spring Boot 中实现多种方式登录(用户名、手机号、邮箱等)的不正经指南
  • .NET平台用C#添加动作到PDF文档
  • 大数据治理:概念、框架与实践应用
  • Vue.observable 全解析:Observable 是什么及使用场景剖析
  • MySQL基础知识大总结
  • 池化技术、Commons Pool介绍