当前位置: 首页 > news >正文

神经网络反向传播算法公式推导

要推导反向传播算法,并了解每一层的参数梯度如何计算,以及每一层的梯度受到哪些值的影响,我们使用一个简单的神经网络结构:

  • 输入层有2个节点
  • 一个有2个节点的隐藏层,激活函数是ReLU
  • 一个输出节点,激活函数是线性激活(即没有激活函数)

假设权重矩阵和偏置如下:

  • 输入层到隐藏层的权重矩阵 W 1 W_1 W1 2 × 2 2 \times 2 2×2
  • 隐藏层的偏置向量 b 1 b_1 b1 2 × 1 2 \times 1 2×1
  • 隐藏层到输出层的权重矩阵 W 2 W_2 W2 2 × 1 2 \times 1 2×1
  • 输出层的偏置向量 b 2 b_2 b2是一个标量

输入为 x = [ x 1 , x 2 ] x = [x_1, x_2] x=[x1,x2],期望输出为 y y y,损失函数为均方误差(MSE)。

前向传播:

  1. 计算隐藏层的输入:
    z 1 = W 1 ⋅ x + b 1 z_1 = W_1 \cdot x + b_1 z1=W1x+b1
  2. 计算隐藏层的激活:
    a 1 = ReLU ( z 1 ) a_1 = \text{ReLU}(z_1) a1=ReLU(z1)
  3. 计算输出层的输入:
    z 2 = W 2 T ⋅ a 1 + b 2 z_2 = W_2^T \cdot a_1 + b_2 z2=W2Ta1+b2
  4. 输出值:
    y ^ = z 2 \hat{y} = z_2 y^=z2
  5. 计算损失:
    L = 1 2 ( y ^ − y ) 2 L = \frac{1}{2} (\hat{y} - y)^2 L=21(y^y)2

反向传播:

  1. 计算输出层的梯度:

    • 损失函数对输出层输入的梯度:
      ∂ L ∂ z 2 = y ^ − y \frac{\partial L}{\partial z_2} = \hat{y} - y z2L=y^y
  2. 计算从输出层到隐藏层的梯度:

    • 隐藏层激活对权重的梯度:
      ∂ L ∂ W 2 = ∂ L ∂ z 2 ⋅ a 1 \frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial z_2} \cdot a_1 W2L=z2La1
    • 隐藏层激活对偏置的梯度:
      ∂ L ∂ b 2 = ∂ L ∂ z 2 \frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial z_2} b2L=z2L
  3. 计算隐藏层的梯度:

    • 损失函数对隐藏层激活的梯度:
      ∂ L ∂ a 1 = W 2 ⋅ ∂ L ∂ z 2 \frac{\partial L}{\partial a_1} = W_2 \cdot \frac{\partial L}{\partial z_2} a1L=W2z2L
    • 隐藏层对隐藏层输入的梯度(ReLU的梯度):
      ∂ L ∂ z 1 = ∂ L ∂ a 1 ⋅ ReLU ′ ( z 1 ) \frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \text{ReLU}'(z_1) z1L=a1LReLU(z1)
      • ReLU梯度 ReLU ′ ( z 1 ) \text{ReLU}'(z_1) ReLU(z1) z 1 > 0 z_1 > 0 z1>0时为1,否则为0
  4. 计算从输入层到隐藏层的梯度:

    • 输入对权重的梯度:
      ∂ L ∂ W 1 = ∂ L ∂ z 1 ⋅ x T \frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot x^T W1L=z1LxT
    • 输入对偏置的梯度:
      ∂ L ∂ b 1 = ∂ L ∂ z 1 \frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial z_1} b1L=z1L

详细推导实例:

假设:

  • x = [ 1 , 2 ] x = [1, 2] x=[1,2]
  • y = 3 y = 3 y=3
  • W 1 = [ 0.5 0.2 0.3 0.7 ] W_1 = \begin{bmatrix} 0.5 & 0.2 \\ 0.3 & 0.7 \end{bmatrix} W1=[0.50.30.20.7]
  • b 1 = [ 0.1 0.2 ] b_1 = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix} b1=[0.10.2]
  • W 2 = [ 0.6 0.9 ] W_2 = \begin{bmatrix} 0.6 \\ 0.9 \end{bmatrix} W2=[0.60.9]
  • b 2 = 0.3 b_2 = 0.3 b2=0.3

前向传播:
1.
z 1 = W 1 ⋅ x + b 1 = [ 0.5 0.2 0.3 0.7 ] ⋅ [ 1 2 ] + [ 0.1 0.2 ] = [ 1.0 1.9 ] z_1 = W_1 \cdot x + b_1 = \begin{bmatrix} 0.5 & 0.2 \\ 0.3 & 0.7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} z1=W1x+b1=[0.50.30.20.7][12]+[0.10.2]=[1.01.9]
2.
a 1 = ReLU ( z 1 ) = ReLU ( [ 1.0 1.9 ] ) = [ 1.0 1.9 ] a_1 = \text{ReLU}(z_1) = \text{ReLU}(\begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix}) = \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} a1=ReLU(z1)=ReLU([1.01.9])=[1.01.9]
3.
z 2 = W 2 T ⋅ a 1 + b 2 = [ 0.6 0.9 ] T ⋅ [ 1.0 1.9 ] + 0.3 = 2.46 z_2 = W_2^T \cdot a_1 + b_2 = \begin{bmatrix} 0.6 \\ 0.9 \end{bmatrix}^T \cdot \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} + 0.3 = 2.46 z2=W2Ta1+b2=[0.60.9]T[1.01.9]+0.3=2.46
4.
y ^ = z 2 = 2.46 \hat{y} = z_2 = 2.46 y^=z2=2.46
5.
L = 1 2 ( 2.46 − 3 ) 2 = 0.1458 L = \frac{1}{2} (2.46 - 3)^2 = 0.1458 L=21(2.463)2=0.1458

反向传播:
1.
∂ L ∂ z 2 = 2.46 − 3 = − 0.54 \frac{\partial L}{\partial z_2} = 2.46 - 3 = -0.54 z2L=2.463=0.54

  1. ∂ L ∂ W 2 = [ − 0.54 ] ⋅ [ 1.0 1.9 ] = [ − 0.54 ⋅ 1.0 − 0.54 ⋅ 1.9 ] = [ − 0.54 − 1.026 ] \frac{\partial L}{\partial W_2} = \begin{bmatrix} -0.54 \end{bmatrix} \cdot \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} = \begin{bmatrix} -0.54 \cdot 1.0 \\ -0.54 \cdot 1.9 \end{bmatrix} = \begin{bmatrix} -0.54 \\ -1.026 \end{bmatrix} W2L=[0.54][1.01.9]=[0.541.00.541.9]=[0.541.026]
    ∂ L ∂ b 2 = − 0.54 \frac{\partial L}{\partial b_2} = -0.54 b2L=0.54

  2. ∂ L ∂ a 1 = [ 0.6 0.9 ] ⋅ − 0.54 = [ − 0.324 − 0.486 ] \frac{\partial L}{\partial a_1} = \begin{bmatrix} 0.6 \\ 0.9 \end{bmatrix} \cdot -0.54 = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} a1L=[0.60.9]0.54=[0.3240.486]
    ∂ L ∂ z 1 = ∂ L ∂ a 1 ⋅ ReLU ′ ( z 1 ) = [ − 0.324 − 0.486 ] ⋅ [ 1 1 ] = [ − 0.324 − 0.486 ] \frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \text{ReLU}'(z_1) = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} z1L=a1LReLU(z1)=[0.3240.486][11]=[0.3240.486]

  3. ∂ L ∂ W 1 = ∂ L ∂ z 1 ⋅ x T = [ − 0.324 − 0.486 ] ⋅ [ 1 2 ] T = [ − 0.324 − 0.648 − 0.486 − 0.972 ] \frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot x^T = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \end{bmatrix}^T = \begin{bmatrix} -0.324 & -0.648 \\ -0.486 & -0.972 \end{bmatrix} W1L=z1LxT=[0.3240.486][12]T=[0.3240.4860.6480.972]
    ∂ L ∂ b 1 = [ − 0.324 − 0.486 ] \frac{\partial L}{\partial b_1} = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} b1L=[0.3240.486]

从上述示例可以看到,每层的梯度依赖于上一层的激活值和当前层的损失梯度。梯度的传递通过链式法则一步步向前传播,从最初的损失函数计算开始,直到最终的输入层的权重和偏置。

http://www.lryc.cn/news/490165.html

相关文章:

  • Spark SQL 之 QueryStage
  • 【shodan】(三)vnc漏洞利用
  • 每日OJ_牛客_游游的字母串_枚举_C++_Java
  • 51c深度学习~合集8
  • 嵌入式:Flash的分类以及Jlink/J-flash的编程支持
  • 【爬虫】Firecrawl对京东热卖网信息爬取(仅供学习)
  • 遗传算法(Genetic Algorithm, GA)
  • 【二分答案+倍增快速幂】课堂练习
  • LeetCode 力扣 热题 100道(九)反转链表(C++)
  • Linux之网络基础
  • Oracle收缩表空间的简单方法
  • C++设计模式行为模式———中介者模式
  • YB2503HV:高效率降压IC,助力电动车、太阳能设备等领域的能源转换
  • 如何使用Jest测试你的React组件
  • 微网能量管理研究
  • Java基础面试题02:简述什么是值传递和引用传递?
  • 【STL】10.set与map的模拟实现
  • Playwright(Java版) - 8: Playwright 元素交互的高级应用
  • 播放器开发之ffmpeg 硬件解码方案
  • n、nvm、nrm、pnpm、yarn各种指令大全
  • 数据库管理-根据日期字段进行数据筛选更新数据
  • 03. 运算符
  • 【最优清零方案——贪心+滑动窗口+线段树】
  • 一个点绕任意点旋转后的点的坐标
  • 大数据面试题每日练习--HDFS是如何工作的?
  • Python的3D可视化库 - vedo (2)visual子模块 基本可视化行为
  • Java AIO(NIO.2)
  • Flink 常用问题及常用配置(有用)
  • RocketMQ: 消息过滤,通信组件,服务发现
  • linux ubuntu的脚本知