当前位置: 首页 > news >正文

数据科学与SQL:组距分组分析 | 区间分布问题

目录

0 问题描述

1 数据准备

2 问题分析

3 小结


0 问题描述

绝对值分布分析也可以理解为组距分组分析。对于某个指标而言,一个记录对应的指标值的绝对值,肯定落在所有指标值的绝对值的最小值和最大值构成的区间内,根据一定的算法,在把这个区间划分为等距离的几个小区间,统计落入这些区间的指标值的绝对值的情况,决策者就可以得到指标值的绝对值在各个区间的分布情况。

以销售表为例,销售表如下:

销售信息样例表(Sales)
countrysale_monthsales_numbersales_value
USA    2008-01-011200500000
USA    2008-02-011150450000
USA    2008-03-011300520000
USA    2008-04-011280510000
USA    2008-05-011350530000
USA    2008-06-011400535000
USA    2008-07-011300510000
USA    2008-08-011250460000
USA    2008-09-011400530000
USA    2008-10-011380520000
USA    2008-11-011450540000
USA    2008-12-011500545000
USA    2009-01-011600550000
USA    2009-02-011390532000
USA    2009-03-011730570000
USA    2009-04-011900600000
USA    2009-05-011850585000
USA    2009-06-013800780000
USA    2009-07-011700560000
USA    2009-08-011490542000
USA    2009-09-011830580000
USA    2009-10-012000610000
USA    2009-11-011950595000
USA    2009-12-011900590000

1 数据准备

create table sales asselect 'USA' country, '2008-01-01' sale_month, '1200' sales_number, '500000' sales_value union allselect 'USA' country, '2008-02-01' sale_month, '1150' sales_number, '450000' sales_value union allselect 'USA' country, '2008-03-01' sale_month, '1300' sales_number, '520000' sales_value union allselect 'USA' country, '2008-04-01' sale_month, '1280' sales_number, '510000' sales_value union allselect 'USA' country, '2008-05-01' sale_month, '1350' sales_number, '530000' sales_value union allselect 'USA' country, '2008-06-01' sale_month, '1400' sales_number, '535000' sales_value union allselect 'USA' country, '2008-07-01' sale_month, '1300' sales_number, '510000' sales_value union allselect 'USA' country, '2008-08-01' sale_month, '1250' sales_number, '460000' sales_value union allselect 'USA' country, '2008-09-01' sale_month, '1400' sales_number, '530000' sales_value union allselect 'USA' country, '2008-10-01' sale_month, '1380' sales_number, '520000' sales_value union allselect 'USA' country, '2008-11-01' sale_month, '1450' sales_number, '540000' sales_value union allselect 'USA' country, '2008-12-01' sale_month, '1500' sales_number, '545000' sales_value union allselect 'USA' country, '2009-01-01' sale_month, '1600' sales_number, '550000' sales_value union allselect 'USA' country, '2009-02-01' sale_month, '1390' sales_number, '532000' sales_value union allselect 'USA' country, '2009-03-01' sale_month, '1730' sales_number, '570000' sales_value union allselect 'USA' country, '2009-04-01' sale_month, '1900' sales_number, '600000' sales_value union allselect 'USA' country, '2009-05-01' sale_month, '1850' sales_number, '585000' sales_value union allselect 'USA' country, '2009-06-01' sale_month, '3800' sales_number, '780000' sales_value union allselect 'USA' country, '2009-07-01' sale_month, '1700' sales_number, '560000' sales_value union allselect 'USA' country, '2009-08-01' sale_month, '1490' sales_number, '542000' sales_value union allselect 'USA' country, '2009-09-01' sale_month, '1830' sales_number, '580000' sales_value union allselect 'USA' country, '2009-10-01' sale_month, '2000' sales_number, '610000' sales_value union allselect 'USA' country, '2009-11-01' sale_month, '1950' sales_number, '595000' sales_value union allselect 'USA' country, '2009-12-01' sale_month, '1900' sales_number, '590000' sales_value
;

2 问题分析

第一步:按照给定的分组方法,计算区间开始,区间结束的值。计算区间范围维度表DIM

select group_num, min_num + group_step * pos       begin_num --区间开始, min_num + group_step * (pos + 1) end_num   --区间结束, pos
from (select pos, group_num, group_step, min_numfrom (select--分组方法CEIL(1 + LOG(10, count_num) / LOG(10, 2))                             group_num,--极差/组数 =组距CEIL((max_num - min_num) / CEIL(1 + LOG(10, count_num) / LOG(10, 2))) group_step,min_numfrom (SELECT MAX(sales_number) max_num,MIN(sales_number) min_num,COUNT(*)          COUNT_NUMFROM sales) t) tlateral view posexplode(split(space(cast(group_num as int) - 1), space(1))) tmp as pos, value) t

 第二步:关联数据表SALES,计算落入区间范围的个数

with dim as (
select group_num, min_num + group_step * pos       begin_num --区间开始, min_num + group_step * (pos + 1) end_num   --区间结束, posfrom (select pos, group_num, group_step, min_numfrom (select--分组方法CEIL(1 + LOG(10, count_num) / LOG(10, 2))                             group_num,--极差/组数 =组距CEIL((max_num - min_num) / CEIL(1 + LOG(10, count_num) / LOG(10, 2))) group_step,min_numfrom (SELECT MAX(sales_number) max_num,MIN(sales_number) min_num,COUNT(*)          COUNT_NUMFROM sales) t) tlateral view posexplode(split(space(cast(group_num as int) - 1), space(1))) tmp as pos, value) t)select concat_ws('-', cast(b.begin_num as string), cast(b.end_num as string)) group_name, count(*)                                                           cnt
from dim bleft join sales a
WHERE a.sales_number >= b.begin_numAND a.sales_number < b.end_num
GROUP BY concat_ws('-', cast(b.begin_num as string), cast(b.end_num as string))

3 小结

组距分组是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。组距分组是数值型数据分组的基本形式。离散变量的整数值如果变动幅度较大,而且总体单位数N又很大,则也要进行组距分组。 在组距分组中,各组之间的取值界限称为组限,一个组的最小值称为下限,最大值称为上限;上限与下限的差值称为组距;上限与下限值的平均数称为组中值,它是一组变量值的代表值。 

具体步骤如下:

1. 确定组数。一组数据的组数一般与数据本身的特点及数据的多少有关。由于分组的目的之一是为了观察数据分布的特征,因此组数的多少应适中。如组数太少,数据的分布就会过于集中,组数太多,数据的分布就会过于分散,这都不便于观察数据分布的特征和规律。组数的确定应以能够显示数据的分布特征和规律为目的。

2.确定各组的组距。组距是一个组的上限与下限的差,可根据全部数据的最大值和最小值(即极差)及所分的组数来确定,即组距=(最大值-最小值)/组数。

3.根据分组整理成频数分布表。

 

如果您觉得本文还不错,对你有帮助,那么不妨可以关注一下我的数字化建设实践之路专栏,这里的内容会更精彩。

专栏 原价99,现在活动价59.9,按照阶梯式增长,还差5个人上升到69.9,最终恢复到原价

 

专栏优势:
(1)一次收费持续更新。

(2)实战中总结的SQL技巧,帮助SQLBOY 在SQL语言上有质的飞越,无论你应对业务难题及面试都会游刃有余【全网唯一讲SQL实战技巧,方法独特】

SQL很简单,可你却写不好?每天一点点,收获不止一点点-CSDN博客

(3)实战中数仓建模技巧总结,让你认识不一样的数仓。【数据建模+业务建模,不一样的认知体系】(如果只懂数据建模而不懂业务建模,数仓体系认知是不全面的)

(4)数字化建设当中遇到难题解决思路及问题思考。

我的专栏具体链接如下:

 数字化建设通关指南_莫叫石榴姐的博客-CSDN博客 

http://www.lryc.cn/news/489742.html

相关文章:

  • odoo18中模型的常用字段类型
  • 【如何用更少的数据作出更好的决策】-gpt生成
  • ara::com 与 AUTOSAR 元模型的关系总结
  • springboot整合hive
  • 浅谈 proxy
  • Ansys Maxwell:SheetScan - 导入材料特性曲线
  • 解决 Android 单元测试 No tests found for given includes:
  • 人工智能的核心思想-神经网络
  • JAVA中的Lamda表达式
  • 锂电池学习笔记(一) 初识锂电池
  • 深度学习2
  • 第六节-AppScan扫描报告
  • 【c++丨STL】stack和queue的使用及模拟实现
  • 基于SpringBoot的在线教育系统【附源码】
  • Kafka-副本分配策略
  • 市场波动不断,如何自我提高交易心理韧性?
  • 加速科技精彩亮相中国国际半导体博览会IC China 2024
  • 利用c语言详细介绍下选择排序
  • 华为流程L1-L6业务流程深度细化到可执行
  • bridge-multicast-igmpsnooping
  • git使用(一)
  • Linux环境安装MongoDB
  • Cyberchef使用功能之-多种压缩/解压缩操作对比
  • TypeScript 装饰器都有那些应用场景?如何更快的上手?
  • 堆优化版本的Prim
  • Ubuntu上安装MySQL并且实现远程登录
  • 蓝桥杯每日真题 - 第21天
  • (长期更新)《零基础入门 ArcGIS(ArcMap) 》实验一(下)----空间数据的编辑与处理(超超超详细!!!)
  • NLP论文速读(CVPR 2024)|使用DPO进行diffusion模型对齐
  • 操作系统——揭开盖子