当前位置: 首页 > news >正文

Django实现智能问答助手-进一步完善

扩展

  1. 增加问答数据库,通过 Django Admin 添加问题和答案。
  2. 实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。
  3. 使用前端框架(如 Bootstrap)增强用户界面

1.注册模型到 Django Admin(admin.py)

在应用目录下的admin.py文件中,注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作,代码如下:

from django.contrib import admin
from. import models
# 注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作
# Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了
admin.site.register(models.QuestionAnswer)

通过以上代码,Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了。

2. 数据库迁移

完成模型定义和注册后,需要进行数据库迁移,让 Django 根据模型创建相应的数据库表结构。打开命令行,进入项目根目录(包含manage.py文件的目录),依次执行以下命令:

python manage.py makemigrations
python manage.py migrate
  • makemigrations命令会根据模型的定义生成迁移文件,它会检测模型的变化并生成相应的脚本,告诉 Django 要对数据库做哪些改变。
  • migrate命令则是将这些迁移脚本实际应用到数据库中,创建或更新对应的表结构。

3. 完善视图逻辑(可能在views.py中)

之前的视图函数可以进一步优化,例如更好地处理可能出现的错误情况等,以下是优化后的示例(在views.py中):

from django.shortcuts import render
from.models import QuestionAnswerdef home(request):if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 这里可以实现简单的匹配逻辑,优化了判断,避免空查询answer = QuestionAnswer.objects.filter(question__icontains=user_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')

在这个优化后的视图函数中:

  1. 增加了对user_question是否为空的判断,如果为空则返回相应提示,让用户输入有效的问题,增强了用户交互的友好性。
  2. 对于找不到答案的情况,返回了更友好的提示语句。

4.实现更复杂的问答逻辑,使用自然语言处理(NLP)库

安装必要的库*

首先确保已经安装了 nltk 库,如果没有安装,可以通过以下命令安装:

pip install nltk

导入必要的模块和下载相关资源(针对 nltk),views.py文件

from django.shortcuts import render
from.models import QuestionAnswer
import nltk
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords# 下载nltk所需的停用词资源(只需执行一次,可在项目启动时或首次运行相关代码时)
nltk.download('stopwords')

修改后的视图函数 home

def home(request):if request.method == 'GET':return render(request, 'qa/home.html', {'response': ""})if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 进行自然语言处理相关的预处理操作stemmer = PorterStemmer()stop_words = set(stopwords.words('english'))# 对用户问题进行分词、词干提取、停用词去除等预处理words = nltk.word_tokenize(user_question)words = [stemmer.stem(word) for word in words if word not in stop_words]# 重新组合处理后的问题processed_question = " ".join(words)# 这里可以实现更复杂的匹配逻辑,基于预处理后的问题进行查找answer = QuestionAnswer.objects.filter(question__icontains=processed_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')

在上述修改后的代码中:

  • 首先导入了 nltk
    相关的模块用于进行自然语言处理操作,包括词干提取(PorterStemmer)和获取停用词(stopwords)。
  • 在处理 POST 请求且用户输入了有效问题后,对用户问题进行了一系列自然语言处理的预处理操作: 先创建了词干提取器
    PorterStemmer 和获取了英语的停用词集合。
  • 对用户问题进行分词,然后对每个分词进行词干提取并去除停用词,最后重新组合成处理后的问题。
  • 基于处理后的问题在 QuestionAnswer 模型中进行答案的查找匹配,根据是否找到答案来设置相应的 response值并返回给模板进行展示。

5.在数据库中预先输入问题和答案

在这里插入图片描述

6.

http://www.lryc.cn/news/488086.html

相关文章:

  • 【Linux】开发工具make/Makefile、进度条小程序
  • 深度学习三大框架对比与实战:PyTorch、TensorFlow 和 Keras 全面解析
  • Leetcode206.反转链表(HOT100)
  • 怎么做好白盒测试?
  • 【神经网络基础】
  • 实战 | C#中使用YoloV8和OpenCvSharp实现目标检测 (步骤 + 源码)
  • debian 如何进入root
  • 短视频矩阵系统:智能批量剪辑、账号管理新纪元!
  • 【SpringMVC - 1】基本介绍+快速入门+图文解析SpringMVC执行流程
  • vitepress博客模板搭建
  • Git入门图文教程 -- 深入浅出 ( 保姆级 )
  • Linux编辑器 - vim
  • Spring Security使用基本认证(Basic Auth)保护REST API
  • MySQL —— explain 查看执行计划与 MySQL 优化
  • 出海第一步:搞定业务系统的多区域部署
  • 二手手机回收小程序,一键便捷高效回收
  • 开源模型应用落地-Qwen2.5-7B-Instruct与vllm实现离线推理-性能分析(四)
  • 深入解析小程序组件:view 和 scroll-view 的基本用法
  • 【汇编语言】转移指令的原理(三) —— 汇编跳转指南:jcxz、loop与位移的深度解读
  • opencv-python 分离边缘粘连的物体(距离变换)
  • 机器学习杂笔记1:类型-数据集-效果评估-sklearn-机器学习算法分类
  • Django+Nginx+uwsgi网站使用Channels+redis+daphne实现简单的多人在线聊天及消息存储功能
  • 数据结构在二叉树Oj中利用子问题思路来解决问题
  • 华为openEuler考试真题演练(附答案)
  • 生成自签名证书并配置 HTTPS 使用自签名证书
  • 物联网核心安全系列——智能汽车安全防护的重要性
  • 数据库视图
  • 从传统分析到智能问数,打造零门槛数据分析方案
  • java 设计模式 模板方法模式
  • 基于UDP和TCP实现回显服务器