当前位置: 首页 > news >正文

实现了两种不同的图像处理和物体检测方法

这段代码实现了两种不同的图像处理和物体检测方法:一种是基于Canny边缘检测与轮廓分析的方法,另一种是使用TensorFlow加载预训练SSD(Single Shot Multibox Detector)模型进行物体检测。

1. Canny边缘检测与轮廓分析:

首先,通过OpenCV进行图像处理,找到矩形物体并进行绘制:

image = cv2.imread('U:/1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)# Canny边缘检测
edges = cv2.Canny(blurred, 50, 150)# 查找轮廓
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for contour in contours:# 逼近多边形epsilon = 0.04 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)# 如果轮廓有4个点且是矩形if len(approx) == 4:# 计算矩形的长宽比x, y, w, h = cv2.boundingRect(approx)aspect_ratio = float(w) / hif 0.8 < aspect_ratio < 1.2:  # 如果长宽比接近1,表示是矩形# 绘制矩形cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)# 显示结果
cv2.imshow("Detected Rectangles", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 步骤:
    1. 灰度化:通过cv2.cvtColor()将图像转换为灰度图。
    2. 高斯模糊:使用cv2.GaussianBlur()进行模糊处理,减少噪声。
    3. Canny边缘检测:通过cv2.Canny()检测图像中的边缘。
    4. 查找轮廓:使用cv2.findContours()获取图像的外部轮廓。
    5. 轮廓逼近:通过cv2.approxPolyDP()简化轮廓形状,逼近为多边形。
    6. 筛选矩形:通过检测轮廓点数为4的多边形,计算长宽比并判断其是否接近正方形(长宽比介于0.8和1.2之间)。
    7. 绘制矩形:如果符合条件,使用cv2.drawContours()绘制绿色矩形框。

2. SSD模型物体检测:

接下来,使用TensorFlow加载预训练的SSD模型,并在图像上进行物体检测,最后绘制检测框:

# 加载预训练的SSD模型
model = tf.saved_model.load('ssd_mobilenet_v2_coco/saved_model')# 读取图片
img = cv2.imread('image_path')
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_tensor = tf.convert_to_tensor(img_rgb)
input_tensor = input_tensor[tf.newaxis, ...]  # 扩展维度# 执行推理
model_fn = model.signatures['serving_default']
output_dict = model_fn(input_tensor)# 获取检测结果
boxes = output_dict['detection_boxes'].numpy()[0]  # 边界框
scores = output_dict['detection_scores'].numpy()[0]  # 置信度
classes = output_dict['detection_classes'].numpy()[0]  # 标签# 筛选出矩形
threshold = 0.5
for i in range(len(scores)):if scores[i] > threshold:y1, x1, y2, x2 = boxes[i]x1, y1, x2, y2 = int(x1 * img.shape[1]), int(y1 * img.shape[0]), int(x2 * img.shape[1]), int(y2 * img.shape[0])cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)# 显示图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
plt.axis('off')
plt.show()
  • 步骤:
    1. 加载SSD模型:通过tf.saved_model.load()加载一个预训练的SSD模型(ssd_mobilenet_v2_coco)。
    2. 读取图像:使用cv2.imread()加载图像,并将其转换为RGB格式。
    3. 图像处理:将图像转换为TensorFlow的张量格式,并扩展为批处理维度。
    4. 推理过程:通过模型的signatures['serving_default']执行推理,获得检测的边界框、置信度和标签。
    5. 筛选结果:根据置信度(scores)大于设定的阈值(0.5)进行筛选。
    6. 绘制边界框:使用cv2.rectangle()绘制绿色矩形框,将检测到的物体框出。
    7. 显示图像:使用matplotlib.pyplot显示处理后的图像。

总结:

  • Canny边缘检测与轮廓分析:通过对图像边缘进行检测,使用轮廓分析找出矩形,并通过长宽比进一步筛选目标。
  • SSD物体检测:利用TensorFlow预训练的SSD模型进行物体检测,并在图像中绘制检测到的物体框。

这两种方法可以结合使用,在某些应用中,如检测特定形状(矩形)和使用深度学习检测物体时,互为补充。

http://www.lryc.cn/news/487530.html

相关文章:

  • 如何在MindMaster思维导图中制作PPT课件?
  • ORIN NX 16G安装中文输入法
  • 【金融风控项目-07】:业务规则挖掘案例
  • 退款成功订阅消息点击后提示订单不存在
  • 实验一 顺序结构程序设计
  • Elasticsearch搜索流程及原理详解
  • 芯片之殇——“零日漏洞”(文后附高通64款存在漏洞的芯片型号)
  • 【gitlab】gitlabrunner部署
  • Flink监控checkpoint
  • Ribbon 入门实战指南
  • uniapp: 微信小程序包体积超过2M的优化方法(主包从2.7M优化到1.5M以内)
  • 【百日算法计划】:每日一题,见证成长(026)
  • 【大模型】prompt实践总结
  • 在Qt(以及C++)中, 和 * 是两个至关重要的符号--【雨露均沾】
  • 本地部署Apache Answer搭建高效的知识型社区并一键发布到公网流程
  • Ubuntu常见命令
  • 网络安全领域的最新动态和漏洞信息
  • 华为开源自研AI框架昇思MindSpore应用案例:人体关键点检测模型Lite-HRNet
  • 每日OJ题_牛客_天使果冻_递推_C++_Java
  • 独立站干货:WordPress主机推荐
  • 支持多种快充协议和支持多种功能的诱骗取电协议芯片
  • Android中常见内存泄漏的场景和解决方案
  • MyBatis Plus中的@TableId注解
  • java基础概念33:常见API-Objects工具类
  • 脚手架vue-cli,webpack模板
  • 什么是React Native?
  • Three.js LOD(Level of Detail)通过根据视距调整渲染细节的技术
  • Vulnhub靶场案例渗透[12]-Grotesque: 1.0.1
  • 招聘和面试
  • Gin 框架入门(GO)-1