当前位置: 首页 > news >正文

python中使用numpy包的向量矩阵相乘

一直对np的线性运算不太清晰,正好上课讲到了,做一个笔记整个理解一下 

1.向量和矩阵

在numpy中,一重方括号表示的是向量vector,vector没有行列的概念。二重方括号表示矩阵matrix,有行列。

 

代码显示如下:

import numpy as np
a=np.array([1,2,3])
a.shape
#(3,)
b=np.array([[1,2,3],[3,4,5]])
b.shape
#(2, 3)
c=np.array([[1],[2],[3]])
c.shape
#(3, 1)

即使[1,2,3]、[[1,2,3]]看起来内容一样 使用过程中也会有完全不一样的变化。下面以向量乘法为例解释。

2.向量和向量乘法

1.* 对应对应位置相乘

普通的*:在numpy里表示普通的对应位置相乘,注意相乘的两个向量、矩阵要保证维数相同

a1=np.array([1,2,3])
a2=np.array([1,2,3])
a1*a2
#array([1, 4, 9])b1=np.array([[1,2,3]])
b2=np.array([[1,2,3]])
b1*b2
#array([[1, 4, 9]])b1=np.array([[1,2,3],[3,4,5]])
b2=np.array([[1,2,3],[3,4,5]])
b1*b2
# array([[ 1,  4,  9],
#        [ 9, 16, 25]])

2.广播机制

如果单纯出现维数对不上,python会报error

b1=np.array([[1,2]])
b2=np.array([[1,2,3]])
b1*b2
#operands could not be broadcast together with shapes (1,2) (1,3) 

但是,还有一种情况会出现乘出来一个好大的矩阵,这个情况常出现在无意之中把行、列的数字搞反的情况下。被称为广播机制,需要两个乘子都有一个维数是1,如果是对不上且不为1就会报错

Numpy中的广播机制,你确定正确理解了吗? - 腾讯云开发者社区-腾讯云

在普通的对应位置相乘,会出现 

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
a1*a3#broadcast together
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

倒过来也会出现

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
a3*a1#broadcast together
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

3.向量点乘np.dot

必须要(行向量,列向量)形式的输入

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
np.dot(a3,a1)
#array([14])
#ValueError: shapes (3,1) and (3,) not aligned: 1 (dim 1) != 3 (dim 0)

 都是行向量,不行

b1=np.array([[1,2,3]])
b2=np.array([[1,2,3]])
np.dot(b1,b2) 
#shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)

都是列向量,触发广播机制

a1=np.array([[1,2,3]])
a3=np.array([[1],[2],[3]])
np.dot(a3,a1)
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

3.矩阵和向量乘法

1.对应位置相乘

如果单纯采用*的方式进行矩阵和向量乘法,那就是广播机制

矩阵+向量

A1=np.array([[1,2,3],[2,3,4]])
b1=np.array([1,2,3])
A1*b1 #broadcast together
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

 对应的向量如果是矩阵形式,结果相同

A2=np.array([[1,2,3],[2,3,4]])
b2=np.array([[1,2,3]])
A2*b2 #broadcast together
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

相似的,如果维数对不上,不会触发广播机制

A3=np.array([[1,2,3],[2,3,4]])
b3=np.array([[1],[2],[3]])
A3*b3 #operands could not be broadcast together with shapes (2,3) (3,1) 

2.矩阵乘法

如果真正想要算矩阵*向量的矩阵乘法,要用np.dot

A4=np.array([[1,2,3],[2,3,4]])
b4=np.array([1,2,3])
np.dot(A4,b4)#dot product
#array([14, 20])

列向量也有类似结果

A4=np.array([[1,2,3],[2,3,4]])
b4=np.array([[1],[2],[3]])
np.dot(A4,b4)#dot product
# array([[14],
#        [20]])

4.矩阵矩阵乘法:

1.直接相乘

同样,也是对应位置相乘

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
A4*B4
# array([[ 1,  4,  9],
#        [ 8, 15, 24]])

 有广播机制

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3]])
A4*B4
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

2.np.dot:

需要第一个的列数和第二个的行数相对应

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
np.dot(A4,B4.T)
# array([[14, 32],
#        [20, 47]])A5=np.array([[1,2,3],[2,3,4]])
B5=np.array([[1,2,3],[4,5,6],[7,8,9]])
np.dot(A5,B5)
# array([[30, 36, 42],
#        [42, 51, 60]])

对不上会报错

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
np.dot(A4,B4)
# shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)

http://www.lryc.cn/news/4861.html

相关文章:

  • ElasticSearch 学习(一)
  • 【新】华为OD机试 - 交换字符(Python)| 刷完获取OD招聘渠道
  • 手把手教你解决传说中的NPE空指针异常
  • 【pytorch安装】conda安装pytorch无法安装cpu版本(完整解决过程)
  • 云计算ACP云服务器ECS实例题库
  • 面试题:作用域、变量提升、块级作用域、函数作用域、暂存性死区、var和let的区别
  • JAVA练习49-爬楼梯
  • 深兰科技机器人商丘制造基地正式投产,助力商丘经济高质量发展
  • ES倒排索引/查询、写入流程
  • 2023软考考哪个证书好?
  • 一般人我劝你不要自学软件测试!!!
  • docker/docker-compose 安装mysql5.7
  • 【C++设计模式】学习笔记(6):Bridge 桥模式
  • Allegro如何批量快速修改复用好的模块操作指导
  • 让我百思不得其解的infer究竟是怎么推导类型的?
  • E8-怎么实现根据表单内容自动生成标题
  • 《c语言深度解剖》--一套非常经典的笔试题
  • 【数据结构与算法】单调队列 | 单调栈
  • openh264解码h264视频帧主流程
  • 【个人笔记】C语言位域
  • ROS笔记(1)——ROS的核心概念
  • 动态SQL使用【JavaEE】
  • leetcode刷题
  • 移动设备安全管理基础指南
  • 【Java|多线程与高并发】 使用Thread 类创建线程的5种方法如何查看程序中的线程
  • 零基础学MySQL(五)-- 详细讲解数据库中的常用函数
  • 第4章 流程控制-if-else,Switch,For循环(循环守卫,循环步长,倒叙打印),While循环,多重循环...
  • 2.4G-WiFi连接路由器过程
  • 3. SpringMVC Rest 风格
  • Python3简介