当前位置: 首页 > news >正文

3D Gaussian Splatting 代码层理解之Part3

最后,内容到达了高斯泼溅过程中最有趣的阶段:渲染!这一步可以说是最关键的,因为它决定了模型的真实性。然而,它也可能是最简单的。在本系列的Part 1和Part2,文章演示了如何将 Raw 3D椭球 转换为可渲染的格式,但现在我们实际上必须完成这项工作并渲染到一组固定的像素上。作者使用 CUDA 开发了一个快速渲染引擎,这可能有点难以理解。因此,首先浏览 Python 中的代码是有益的,为了清晰起见,使用简单的 for 循环。对于那些渴望深入了解的人来说,所有必要的代码都可以在我们的 GitHub上找到。

继续讨论如何渲染每个单独的像素。从上一篇文章中,我们有了所有必要的组件:2D 点、相关颜色、协方差、排序深度顺序、2D 中的逆协方差、每个 splat 的最小和最大 x 和 y 值以及相关的不透明度。有了这些组件,就可以渲染任何像素。对于给定特定的像素坐标,我们按照相对于相机平面的泼溅深度顺序(投影到相机平面,然后按深度排序)遍历所有泼溅,直到达到饱和阈值。对于每个 splat,我们首先检查像素坐标是否在最小和最大 x 和 y 值定义的边界内。此检查确定我们是应该继续渲染还是忽略这些坐标的 splat。接下来,我们使用 splat 均值、splat 协方差和像素坐标计算像素坐标处的高斯 splat 强度。

def compute_gaussian_weight(pixel_coord: torch.Tensor,  # (1, 2) tensorpoint_mean: torch.Tensor,inverse_covariance: torch.Tensor,
) -> torch.Tensor:difference = point_mean - pixel_coordpower = -0.5 * difference @ inverse_covariance @ difference.Treturn torch.exp(power).item()

我们将此权重乘以 splat 的不透明度,以获得一个名为 alpha 的参数。在将此新值添加到像素之前,我们需要检查是否已超过饱和度阈值。如果像素已经饱和,我们不希望其他 splat 后面的 splat 影响像素着色并使用计算资源。因此,这里使用一个阈值,允许我们在超过该阈值时停止渲染。在实践中,我们从 1 开始将饱和阈值乘以 min(0.99, (1 — alpha))  得到一个新值。如果此值小于阈值 (0.0001),我们将停止渲染该像素并认为它已完成。如果没有,我们将添加由saturation * (1 — alpha)值加权的颜色,并将饱和度更新为 new_saturation = old_saturation * (1 — alpha)。最后,我们遍历每个像素(或实际中的每个 16x16 图块)并进行渲染。完整的代码如下所示。

def render_pixel(self,pixel_coords: torch.Tensor,points_in_tile_mean: torch.Tensor,colors: torch.Tensor,opacities: torch.Tensor,inverse_covariance: torch.Tensor,min_weight: float = 0.000001,) -> torch.Tensor:total_weight = torch.ones(1).to(points_in_tile_mean.device)pixel_color = torch.zeros((1, 1, 3)).to(points_in_tile_mean.device)for point_idx in range(points_in_tile_mean.shape[0]):point = points_in_tile_mean[point_idx, :].view(1, 2)weight = compute_gaussian_weight(pixel_coord=pixel_coords,point_mean=point,inverse_covariance=inverse_covariance[point_idx],)alpha = weight * torch.sigmoid(opacities[point_idx])test_weight = total_weight * (1 - alpha)if test_weight < min_weight:return pixel_colorpixel_color += total_weight * alpha * colors[point_idx]total_weight = test_weight# in case we never reach saturationreturn pixel_color
http://www.lryc.cn/news/486024.html

相关文章:

  • Ceph 中PG与PGP的概述
  • 已解决:spark代码中sqlContext.createDataframe空指针异常
  • flutter字体大小切换案例 小字体,标准字体,大字体,超大字体案例
  • 智慧建造-运用Trimble技术将梦幻水族馆变为现实【上海沪敖3D】
  • 【NOIP提高组】计算系数
  • IDEA部署AI代写插件
  • 【阅读记录-章节1】Build a Large Language Model (From Scratch)
  • 微服务day08
  • JAVA接入WebScoket行情接口
  • 使用Axios函数库进行网络请求的使用指南
  • Vue2+ElementUI:用计算属性实现搜索框功能
  • 抖音热门素材去哪找?优质抖音视频素材网站推荐!
  • spring-cache concurrentHashMap 自定义过期时间
  • 解析传统及深度学习目标检测方法的原理与具体应用之道
  • shell数组
  • 高斯混合模型回归(Gaussian Mixture Model Regression,GMM回归)
  • 【3D Slicer】的小白入门使用指南八
  • 【流量分析】常见webshell流量分析
  • 基于树莓派的边缘端 AI 目标检测、目标跟踪、姿态估计 视频分析推理 加速方案:Hailo with ultralytics YOLOv8 YOLOv11
  • Java在算法竞赛中的常用方法
  • Vulnhub靶场案例渗透[10]- Momentum2
  • Spark RDD中常用聚合算子源码层面的对比分析
  • 计算机网络 (6)物理层的基本概念
  • 快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux)
  • kafka消费者出现频繁Rebalance
  • rk3399开发环境使用Android 10初体验蓝牙功能
  • ASP.NET 部署到IIS,访问其它服务器的共享文件 密码设定
  • 将自定义函数添加到MATLAB搜索路径的方法
  • 云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测
  • 什么是MySQL,有什么特点