当前位置: 首页 > news >正文

高斯混合模型回归(Gaussian Mixture Model Regression,GMM回归)

高斯混合模型(GMM)是一种概率模型,它假设数据是由多个高斯分布的混合组成的。在高斯混合回归中,聚类与回归被结合成一个联合模型:

  • 聚类部分 — 使用高斯混合模型进行聚类,识别数据的不同簇。
  • 回归部分 — 对每个簇中的数据使用回归方法来建模,通常是线性回归或非线性回归。

GMM回归不仅能捕捉数据的聚类结构,还能进行回归预测,适用于处理具有复杂分布的数据。

下面是一个简单的高斯混合模型回归(GMM回归)的Python示例。在这个示例中,我们将使用GaussianMixture模型进行数据的聚类,然后在每个聚类中使用线性回归进行回归预测。

代码步骤:

  1. 生成数据:首先,生成一些具有非线性关系的样本数据。
  2. 高斯混合模型聚类:使用GaussianMixture对数据进行聚类。
  3. 在每个聚类中进行回归:在每个聚类中的数据上训练一个回归模型(例如线性回归)。
  4. 预测:对新样本进行聚类预测并使用相应的回归模型进行回归。

示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split# 1. 生成一些数据
n_samples = 300
X, y = make_regression(n_samples=n_samples, n_features=1, noise=10, random_state=42)# 添加一些非线性扰动
y = y + 50 * np.sin(X).ravel()# 2. 高斯混合模型聚类
n_components = 3  # 假设数据可以分成3个簇
gmm = GaussianMixture(n_components=n_components, random_state=42)
gmm.fit(X)  # 对数据进行聚类# 预测每个数据点属于哪个簇
cluster_labels = gmm.predict(X)# 3. 在每个簇中训练回归模型
regressors = {}
for i in range(n_components):# 选取当前簇的数据X_cluster = X[cluster_labels == i]y_cluster = y[cluster_labels == i]# 对每个簇的样本拟合线性回归模型regressor = LinearRegression()regressor.fit(X_cluster, y_cluster)regressors[i] = regressor# 4. 可视化数据和回归模型
plt.figure(figsize=(10, 6))
plt.scatter(X, y, c=cluster_labels, cmap='viridis', marker='o', edgecolor='k', s=50)
plt.title("GMM Clustering and Regression", fontsize=16)
plt.xlabel("X", fontsize=12)
plt.ylabel("y", fontsize=12)# 绘制每个聚类的回归线
X_range = np.linspace(X.min(), X.max(), 1000).reshape(-1, 1)
for i in range(n_components):y_pred = regressors[i].predict(X_range)plt.plot(X_range, y_pred, label=f'Cluster {i} Regression', linewidth=2)plt.legend()
plt.show()# 5. 使用训练好的回归模型进行预测
# 假设我们有新的样本
X_new = np.array([[0.1], [1.5], [3.0]])# 对新的样本进行聚类预测
new_cluster_labels = gmm.predict(X_new)# 对每个样本使用对应簇的回归模型进行预测
y_new_pred = np.array([regressors[label].predict(X_new[i].reshape(1, -1)) for i, label in enumerate(new_cluster_labels)])print("Predictions for new samples:", y_new_pred.ravel())

代码说明:

  1. 生成数据:我们使用make_regression生成一些线性数据,然后添加了一个非线性扰动(50 * np.sin(X))来模拟更复杂的关系。

  2. 聚类:使用GaussianMixture模型将数据分为3个簇。GaussianMixture模型会根据数据的分布情况进行高斯分布的拟合。

  3. 回归:对于每个簇,我们单独训练一个线性回归模型。每个簇的数据都会拟合一个单独的回归模型,从而使得每个簇内的回归结果更加贴合数据的局部模式。

  4. 预测:通过预测新样本所属的簇,然后使用对应簇中的回归模型进行预测。

  5. 可视化:展示了数据点、每个簇的回归线以及数据的聚类分布。

运行结果:

在这里插入图片描述

  1. 聚类可视化:图中不同颜色的点表示数据被分成不同的簇,每个簇的数据分布和回归线是不同的。
  2. 回归预测:对于新样本,我们首先确定它属于哪个簇,然后根据该簇的回归模型进行预测。

适用场景:

  • 当数据集存在多个模式或子群体时,使用高斯混合模型进行聚类,并在每个簇内训练单独的回归模型,有助于提高回归性能。
  • 该方法适合数据分布复杂且呈现非线性关系的场景。

这个示例只是一个简单的实现,您可以根据需要进行更复杂的回归模型设计(例如,非线性回归模型、决策树回归等)以及调整高斯混合模型的超参数。

http://www.lryc.cn/news/486007.html

相关文章:

  • 【3D Slicer】的小白入门使用指南八
  • 【流量分析】常见webshell流量分析
  • 基于树莓派的边缘端 AI 目标检测、目标跟踪、姿态估计 视频分析推理 加速方案:Hailo with ultralytics YOLOv8 YOLOv11
  • Java在算法竞赛中的常用方法
  • Vulnhub靶场案例渗透[10]- Momentum2
  • Spark RDD中常用聚合算子源码层面的对比分析
  • 计算机网络 (6)物理层的基本概念
  • 快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux)
  • kafka消费者出现频繁Rebalance
  • rk3399开发环境使用Android 10初体验蓝牙功能
  • ASP.NET 部署到IIS,访问其它服务器的共享文件 密码设定
  • 将自定义函数添加到MATLAB搜索路径的方法
  • 云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测
  • 什么是MySQL,有什么特点
  • 初始化mysql5.7
  • C# 字典应用
  • CDH安装与配置及相关大数据组件实践
  • fastapi 调用ollama之下的sqlcoder模式进行对话操作数据库
  • YOLO系列基础(六)YOLOv1原理详解,清晰明了!
  • LeetCode100之环形链表(141)--Java
  • 【ict基础软件赛道】真题-50%openEuler
  • <AI 学习> 下载 Stable Diffusions via Windows OS
  • 计算机图形学在游戏开发中的应用
  • 【CubeMX-HAL库】STM32H743II——SDRAM配置所遇问题
  • mac上使用docker搭建gitlab
  • 二维数组操作
  • uniapp设置tabBar高斯模糊并设置tabBar高度占位
  • 上市公司代理成本数据大全(第一类和第二类代理成本均有)1991-2023年
  • CA-Markov模型概述及其MATLAB实现
  • 《生成式 AI》课程 第3講 CODE TASK执行文章摘要的机器人