当前位置: 首页 > news >正文

【Fermat】费马小定理

 

定理


若存在整数 a , p 且g c d ( a , p ) = 1 gcd(a,p)=1gcd(a,p)=1,即二者互为质数,则有
a ( p − 1 ) ≡ 1 ( m o d p ) a^{(p-1)}≡ 1(mod p)

(p−1)
 ≡1(modp)

目录

定理

引理

引理一

引理二

证明

应用

代码


 

引理

引理一


若a,b,c为任意3个整数,m为正整数,且g c d ( m , c ) = 1 gcd(m,c)=1gcd(m,c)=1,则当a ∗ c ≡ b ∗ c ( m o d   m ) a*c\equiv b*c(mod\ m)a∗c≡b∗c(mod m)时,有a ≡ b ( m o d   m ) a\equiv b(mod\ m)a≡b(mod m)。

引理二


设m是一个整数且m>1,b是一个整数且(m,b)=1。如果a[1],a[2],a[3],a[4],…a[m]是模m的一个完全剩余系,则b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]也构成模m的一个完全剩余系。

证明

若存在2个整数b·a[i]和b·a[j]同余即b·a[i]≡b·a[j](mod m)…(i>=1 && j>=1),根据引理1则有a[i]≡a[j](mod m)。根据完全剩余系的定义可知这是不可能的,因此不存在2个整数b·a[i]和b·a[j]同余。
所以b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]构成模m的一个完全剩余系。
构造素数 的完全剩余系
p={1,2,3,…,p-1}.
因为 ,由引理2可得
A={a,2a,3a,…,(p-1)a}.
也是p的一个完全剩余系。由完全剩余系的性质,
123*…(p-1)≡a2a3a…*(p-1)a(mod p).

( p − 1 ) ! ≡ ( p − 1 ) ! ∗ a ( p − 1 ) ( m o d   p ) (p-1)!≡(p-1)!*a^{(p-1)}(mod\ p)(p−1)!≡(p−1)!∗a 
(p−1)
 (mod p)
易知 ((p-1)!,p)=1,同余式两边可约去(p-1)!,得到
a ( p − 1 ) ≡ 1 ( m o d p ) a^{(p-1)}≡1(mod p)a 
(p−1)
 ≡1(modp)

逆元:ax≡1(mod p)当a和p互质时,方程的解 x 称为a关于p的逆元,

在普通的四则运算中,只有加减乘三种运算可以进行分别取余运算,因为这三种运算都是从低位到高位的运算,而对于除法是从高位到低位的运算,显然不能直接进行取余,这时候,就要用到逆元有关的运算。

逆元可以近似的看作倒数的概念

应用


例如,

如果要求(x / y)%p ,显然不可以(x%p)/(y%p),

利用逆元运算:可以将(x / y)%p化为 (x * Y )%p ,其中Y是y关于p的逆元

那么怎么求Y呢:

由逆元的定义,有y • Y≡1(mod p),

费马小定理:如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡ 1(mod p)。

我们分离一项出来 a • a ( p − 2 ) ≡ 1 ( m o d   p ) a • a^{(p-2)} ≡ 1(mod\ p)a•a 
(p−2)
 ≡1(mod p).

对比逆元的方程式,可以很容易得到,a关于p的逆元就是 a ( p − 2 ) a^{(p-2)}a 
(p−2)
 ,那么Y = y ( p − 2 ) 。 Y=y^{(p-2)}。Y=y 
(p−2)
 。

代码

根据上述推断,根据快速幂可推得:


/* 除法取模模板 */
ll quick(ll a,ll b,ll c)//快速幂取模 
{ll ans=1;a%=c;while(b){if(b&1) ans=ans*a%c;a=a*a%c;b>>=1;}	return ans%c;
}ll divi(ll a,ll b,ll p)
{b=quick(b,p-2,p);	//b的逆元return a*b%p; 
}

http://www.lryc.cn/news/485096.html

相关文章:

  • NVMe(Non-Volatile Memory Express)非易失性存储器访问和传输协议
  • C++初阶——queue
  • 达梦数据库迁移j脚本
  • 【Linux】内核调用栈打印函数dump_stack使用效果
  • Uniapp踩坑input自动获取焦点ref动态获取实例不可用
  • 数据分析-47-时间序列变点检测之离线历史数据的CPD
  • 加入GitHub Spark需要申请
  • 生成式GPT商品推荐:精准满足用户需求
  • async 和 await的使用
  • Spring Cloud Vault快速入门Demo
  • 道陟科技EMB产品开发进展与标准设计的建议|2024电动汽车智能底盘大会
  • GitHub Org
  • unity小:shaderGraph不规则涟漪、波纹效果
  • 【JavaScript】JavaScript开篇基础(6)
  • Spark RDD、DStream、DataFrame、DataSet 在窗口操作上的区别
  • http自动发送请求工具(自动化测试http请求)
  • 网络IP地址会经常换吗?深入解析与实操指南
  • MapLocNet由粗到细的定位网络
  • 【Docker】Mac安装Docker Desktop导致磁盘剩余空间较少问题如何解决?
  • 构建客服知识库:企业效率提升的关键步骤
  • java-Day06 内部类 Lambda表达式 API
  • Springboot配置全局异常通用返回
  • 计算机视觉在自动驾驶汽车中的应用
  • wordpress functions文件的作用及详细说明
  • Cellebrite VS IOS18Rebooting
  • [每日一氵] PySpark 的 log GC 部分是什么意思
  • Transformer中的算子:其中Q,K,V就是算子
  • JWTUtil工具类
  • 【eNSP】企业网络架构实验——vlan间的路由通信(三)
  • 软件测试基础二十九 (接口测试 mock)