当前位置: 首页 > news >正文

Oracle 聚集因子factor clustering

文章目录

  • 聚集因子(Factor clustering)
  • 举例说明
  • 查询聚集因子
  • 聚集因子的优化
  • 结论

最近发现突然忘记聚集因子的原理了,故整理记录一下

聚集因子(Factor clustering)

在Oracle中,聚集因子(Clustering Factor)用于衡量数据在表中存储的顺序与索引的排序顺序的匹配程度。聚集因子越小,表示数据行与索引的顺序越接近,从而在使用索引进行查询时,减少了I/O开销。聚集因子的计算方法如下:

举例说明

假设有一张名为EMPLOYEES的表,其包含以下几行数据,按员工ID(EMP_ID)顺序展示:

EMP_IDDEPT_ID
110
210
320
420
530
630
730
810
920
1030

假设数据块的存储情况
在Oracle数据库中,这些数据并不会完全顺序存放,而是分布在不同的数据块中。假设这些行数据存储在如下的物理数据块中:

  • 块1:存储EMP_ID为1、2的数据(DEPT_ID为10)

  • 块2:存储EMP_ID为3、4的数据(DEPT_ID为20)

  • 块3:存储EMP_ID为5、6、7的数据(DEPT_ID为30)

  • 块4:存储EMP_ID为8的数据(DEPT_ID为10)

  • 块5:存储EMP_ID为9的数据(DEPT_ID为20)

  • 块6:存储EMP_ID为10的数据(DEPT_ID为30)
    计算聚集因子
    现在,我们在DEPT_ID列上创建了一个索引。Oracle会按照DEPT_ID的顺序扫描EMPLOYEES表来计算聚集因子。扫描过程如下:

  • 扫描第一个值DEPT_ID=10(EMP_ID=1, 块1):读取第一个块,计数1。

  • 扫描下一个值DEPT_ID=10(EMP_ID=2, 块1):在同一个块中,不增加计数。

  • 扫描下一个值DEPT_ID=20(EMP_ID=3, 块2):进入一个新块,计数加1,总计数为2。

  • 扫描下一个值DEPT_ID=20(EMP_ID=4, 块2):在同一个块中,不增加计数。

  • 扫描下一个值DEPT_ID=30(EMP_ID=5, 块3):进入一个新块,计数加1,总计数为3。

  • 扫描下一个值DEPT_ID=30(EMP_ID=6, 块3):在同一个块中,不增加计数。

  • 扫描下一个值DEPT_ID=30(EMP_ID=7, 块3):在同一个块中,不增加计数。

  • 扫描下一个值DEPT_ID=10(EMP_ID=8, 块4):进入一个新块,计数加1,总计数为4。

  • 扫描下一个值DEPT_ID=20(EMP_ID=9, 块5):进入一个新块,计数加1,总计数为5。

  • 扫描最后一个值DEPT_ID=30(EMP_ID=10, 块6):进入一个新块,计数加1,总计为6。
    聚集因子的结果
    因此,这个索引的聚集因子为6。这个值表示在按照DEPT_ID的顺序读取数据时,总共需要访问6个不同的数据块。

查询聚集因子

在Oracle中,可以使用以下SQL查询语句来查看索引的聚集因子:


SELECT INDEX_NAME, CLUSTERING_FACTOR 
FROM DBA_INDEXES 
WHERE TABLE_NAME = 'your_table_name';

聚集因子的优化

聚集因子可以通过重建表或调整数据的存储顺序来优化,例如使用ALTER TABLE … MOVE或分区技术,使数据的物理存储顺序更接近索引顺序,从而提高索引的性能。

结论

解释聚集因子对性能的影响

  • 聚集因子小(接近块数):如果数据物理存储顺序接近于索引的顺序,那么在使用索引进行查询时需要读取的块数会少,查询性能更好。
  • 聚集因子大(接近行数):如果数据顺序和索引顺序差异较大,聚集因子会接近于行数,表示在使用索引时需要访问更多的块,查询性能会较差。
    通过控制数据的物理顺序,可以降低聚集因子,从而提高索引的查询性能。
http://www.lryc.cn/news/482592.html

相关文章:

  • 【大数据学习 | kafka高级部分】kafka的快速读写
  • 云技术基础
  • 字节序(Byte Order)
  • 融云:社交泛娱乐出海机会尚存,跨境电商异军突起
  • django博客项目实现站内搜索功能
  • 蓝桥杯c++算法学习【1】之枚举与模拟(卡片、回文日期、赢球票、既约分数:::非常典型的比刷例题!!!)
  • Android 延时操作的常用方法
  • AI驱动的轻量级笔记应用Blinko
  • 一文搞懂 UML 类图
  • Zabbix 7 最新版本安装 Rocky Linux 8
  • 使用HTML、CSS和JavaScript创建动态雪人和雪花效果
  • redis bind 127.0.0.1和bind 10.34.56.78的区别
  • 基于点云的 3D 目标检测模型 PointPillars 部署 tensorRT
  • centos查看硬盘资源使用情况命令大全
  • Solon MVC 的 @Mapping 用法说明
  • uni-app表单⑪
  • PyQt5 加载UI界面与资源文件
  • 【MySQL】数据库知识突破:数据类型全解析与详解
  • 使用Golang实现开发中常用的【实例设计模式】
  • 【Java学习】电脑基础操作和编程环境配置
  • AVL树解析
  • 栈和队列(Java)
  • C#设计原则
  • easyfs 简易文件系统
  • 【架构论文-1】面向服务架构(SOA)
  • 刚刚!更新宁德时代社招Verify测评语言理解数字推理SHL题库、网盘资料、高分答案
  • C++笔记---智能指针
  • CentOS 7系统中更改YUM源为阿里云的镜像源
  • Python酷库之旅-第三方库Pandas(206)
  • 3.4CQU数学实验???