当前位置: 首页 > news >正文

Python工具箱系列(五十七)

图像分割与人脸识别

众所周知图像是由若干有意义的像素组成的,图像分割作为计算机视觉的基础,对具有现有目标和较精确边界的图像进行分割,实现在图像像素级别上的分类任务。图像分割可分为语义分割和实例分割两类,区别如下:

  • 语义分割:将图像中每个像素赋予一个类别标签,用不同的颜色来表示。例如能够区分人脸与头发、能够区分人与动物等

  • 实例分割:无需对每个像素进行标记,只需要找到感兴趣物体的边缘轮廓。

图像分割通常应用如下所示:

  • 专业检测:应用于专业场景的图像分析,比如在卫星图像中识别建筑、道路、森林,或在医学图像中定位病灶、测量面积等;

  • 智能交通:识别道路信息,包括车道标记、交通标志等。

    我们使用pixellib库来进行图像分割。

import timefrom pixellib.instance import instance_segmentation
from pixellib.semantic import semantic_segmentationdef semantic_seg(inputfile, outputfile):"""对图像进行语义分割(semantic segmentation)Args:inputfile (string): 输入文件outputfile (string): 输出文件"""segment_image = semantic_segmentation()segment_image.load_pascalvoc_model(r"D:\test\deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")start = time.time()segment_image.segmentAsPascalvoc(inputfile, output_image_name=outputfile,overlay = True)end = time.time()print(f"Inference Time: {end-start:.2f}seconds")def instance_seg(inputfile, outputfile):"""对图像进行实体分割Args:inputfile (string): 输入文件outputfile (string): 输出文件"""segment_image = instance_segmentation()segment_image.load_model(r"D:\test\mask_rcnn_coco.h5")start = time.time()segment_image.segmentImage(inputfile, output_image_name=outputfile,show_bboxes = True)end = time.time()print(f"Inference Time: {end-start:.2f}seconds")def test_semantic():targetimage = r'd:\test\horseandman.png'outimage = r'd:\test\semantic.png'semantic_seg(targetimage,outimage)def test_instance():targetimage = r'd:\test\food.jpg'outputfile = r'd:\test\box.png'instance_seg(targetimage,outputfile)test_semantic()
test_instance()

代码中,test_semantic函数进行语义分割的演示。其中horseandman.png如下图所示,是人、马、狗组合在一起的风景图,人类是可以理解的。

图片

经过人工智能训练后的代码,进行语义分割后,形成的图像如下所示。

图片

上图表明计算机也能够理解。因为输出结果中不同物体的颜色表明了模型识别出的类型。颜色示意如下图所示。

图片

其中棕色代表人、鲜红代表马、紫色代表狗,形成了非常准确的判断。此外,函数test_instance使用模型能够对目标进行识别,并且使用矩形进行标注。下图是有名的互联网大佬聚餐图。

图片

使用上述代码进行实体分割后的效果如下图所示。

图片

效果还差强人意,勉强可用。在上面的代码中,我们加载了在load_pascalvoc_model上训练的用于分割对象的xception模型以及Mask RCNN模型。由于以上模型较大,建议下载后本地化保存与部署。

在实际应用中,还存在着人脸识别的需求。以下代码借助第三方库face_recognition轻松实现了人脸识别的基本能力。

import face_recognition
import cv2targetimage = r'd:\test\food.jpg'# 加载待识别图片
image = face_recognition.load_image_file(targetimage)face_location = face_recognition.face_locations(image,number_of_times_to_upsample=5, model='hog')for location in face_location:top, right, bottom, left = locationprint("已检测到人脸部位,像素区域为:top:{}, right:{}. bottom:{}, left:{}".format(top, right, bottom, left))start = (left, top)end = (right, bottom)cv2.rectangle(image, start, end, (0, 0, 255), thickness=2)cv2.imshow("window", image)
cv2.waitKey(0)

依然使用前面的大佬聚餐图,通过上述代码可以很轻松地完成人脸识别,效果如下所示。

图片

在face_locations函数中,可以选择'hog'与'cnn'两种模型。hog模型更快,cnn更精确。此外,number_of_times_to_upsample缺省为1,如果识别时效果不好,增加这个值。最后,将第三方库的安装过程列举如下。

pip install tensorflow==2.2.0
pip install pixellib
pip install face_recognition

tensorflow推荐安装2.2.0版本,否则上述代码可能跑不下来。

http://www.lryc.cn/news/474503.html

相关文章:

  • 数据智能驱动金融策略优化:民锋智能分析技术的应用
  • 1009:带余除法
  • Jmeter实际应用
  • C++基础(11.AVL树的实现)
  • c# 抽象方法 虚函数 使用场景
  • 大数据安全方案 验证
  • 电脑软件:推荐一款免费且实用的电脑开关机小工具
  • php反序列化靶场随笔分析
  • 动态规划 - 编辑距离
  • 力扣——113. 路径总和
  • C02S04-Ubuntu基本使用
  • C语言 | Leetcode C语言题解之第525题连续数组
  • Qml-Transition的使用
  • Notepad++检索包含多个关键字的行
  • C语言:水仙花树,要求三位以上的N位整数每位的N次方等于数本身,全部输出出来
  • 金融贷款口子超市V2源码 Thinkphp开发的贷款和超市平台源码(亲测源码含安装视频教程)
  • redis的三种客户端
  • 边缘计算【智能+安全检测】系列教程--agx orin解决RTC时间问题
  • 数据库动态扩容:Java实现与技术策略
  • Golang | Leetcode Golang题解之第525题连续数组
  • 低代码架构浅析
  • mysql字段是datetime如何按照小时来统计
  • nacos快速启动
  • @Excel若依导出异常/解决BusinessBaseEntity里面的字段不支持导出
  • 虚拟机 Email 恢复专用工具:Virtual Machine Email Recovery
  • 代理人工智能如何应对现代威胁的速度和数量
  • element-plus版本过老,自写选项弹框增删功能
  • Python毕业设计选题:基于django+vue的宠物寄养平台的设计与实现
  • 计算机后台服务-更新下载,重启————未来之窗行业应用跨平台架构
  • springcloud通过MDC实现分布式链路追踪