当前位置: 首页 > news >正文

【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第六篇-阶段总结篇】

因为马上就要进入下一个阶段,制作动态编辑体积纹理的模块。

但在这之前,要在这一章做最后一些整理。

  • 首先,我们完成没完成的部分。
  • 其次,最后整理一下图表。
  • 最后,本文附上正在用的贴图

完善Shader

还记得我们之前注释掉了"阶梯纹理修复"的部分吗?
在这里插入图片描述
在这里插入图片描述

在第二章第七节中,我们已经修复了这个阶梯纹理。

CurPos += LocalCamVec * (1 - FinalStepSize);//只留了它

然而,在第三章对Shader进行大幅修改时,我们暂时将其注释掉并未继续处理。现在,我们将重新着手修复这个阶梯纹理问题。

希望你还记得,修复阶梯纹理的原理是将for循环的一步单独再以一个小步FinalStepSize执行一次。
因此,基本上就是将for循环中的内容复制出来,在for之后再运行一次。

//创建变量,从0开始累加沿相机方向步进过程中的总密度
float accumdens = 0;//Shadow部分
//创建变量,透射率和光线的能量
float transmittance =1;
float3 lightenergy = 0;
//基本和相机方向步进一样,但这些都是常量,不需要写进for里
Density *= StepSize;
LightVector *= ShadowStepSize;
ShadowDensity *= ShadowStepSize;
//一个对数来计算阈值,用来判断光线是否还值得计算
float shadowthresh = -log(ShadowThreshold)/ShadowDensity;//使用 MaxSteps 作为最大步数进行循环,每次循环执行以下操作
for (int i = 0; i < MaxSteps; i++)
{float cursample = PseudoVolumeTexture(Tex, TexSampler, saturate(CurPos), XYFrames, NumFrames).r;// 在当前步进位置进行纹理采样//Shadow部分if(cursample > 0.001)//如果采样位置没有密度,则跳过{float3 Lpos = CurPos;//Lpos将作为光线步进的起始位置float shadowdist = 0;//和之前的accumdens一样,积累阴影//自阴影for(int s = 0; s < ShadowSteps; s++){Lpos += LightVector;//移动步进位置float Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;//采样//判断是否在框内,不是则直接break退出forfloat3 shadowboxtest = floor( 0.5+ (abs(0.5-Lpos)));//float exitshadowbox = shadowboxtest.x + shadowboxtest.y + shadowboxtest.z;float exitshadowbox = dot(shadowboxtest,1);//简短的通道相加if(shadowdist > shadowthresh || exitshadowbox >= 1) break;shadowdist += Lsample;//累计}//接收阴影float3 dfpos = 2 * (CurPos -0.5) * LocalObjectBoundsMax;//-0.5 * 2,得到一个居中的Bounddfpos = LWCToFloat(TransformLocalPositionToWorld(Parameters,dfpos)) - CameraPosWS;//将dfpos转换为世界空间,需要LWC精度所以在代码里转换,减去相机位置float dftracedist = 1; //创建四个变量float dfshadow = 1;//这是我们最终要的float curdist = 0;float DistanceAlongTrace = 0;for (int d = 0; d < DFSSteps; d++)//又一次的光线步进{DistanceAlongTrace += curdist;//增加距离curdist = GetDistanceToNearestSurfaceGlobal(dfpos);//采样全局距离场,他和蓝图里`DistanceToNearestSurface`是相同函数float SphereSize = DistanceAlongTrace * LightTangent;//采样距离场软阴影的球形距离dfshadow = min( saturate(curdist/SphereSize),dfshadow);//用小于它的结果来更新变量dfpos.xyz += LightVectorWS * dftracedist * curdist;//继续移动位置dftracedist *= 1.0001;//增加一个很小的因子}//更新样本和光能,算法是BeersLaw函数cursample = 1 -exp(-cursample * Density);lightenergy += exp(-shadowdist * ShadowDensity) * cursample * transmittance * LightColor * dfshadow;//在结果上乘dfshadowtransmittance *= 1-cursample;//环境光照部分shadowdist = 0;//重置一下阴影距离,继续利用它计算光照Lpos = CurPos + float3(0,0,0.025);//新位置float Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;//采样shadowdist += Lsample;Lpos = CurPos + float3(0,0,0.05);Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;//采样shadowdist += Lsample;Lpos = CurPos + float3(0,0,0.15);Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;//采样shadowdist += Lsample;lightenergy += exp(-shadowdist * AmbientDensity) *cursample * SkyColor * transmittance;//累计到光}CurPos += -LocalCamVec;
}CurPos += LocalCamVec * (1 - FinalStepSize);
float cursample = PseudoVolumeTexture(Tex, TexSampler, saturate(CurPos), XYFrames, NumFrames).r;//从上面复制过来,使用 FinalStepSize 结果再 Step 一次,进行阶梯修复if(cursample > 0.001){float3 Lpos = CurPos;float shadowdist = 0;for(int s = 0; s < ShadowSteps; s++){Lpos += LightVector;float Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;float3 shadowboxtest = floor( 0.5+ (abs(0.5-Lpos)));float exitshadowbox = dot(shadowboxtest,1);if(shadowdist > shadowthresh || exitshadowbox >= 1) break;shadowdist += Lsample;}float3 dfpos = 2 * (CurPos -0.5) * LocalObjectBoundsMax;dfpos = LWCToFloat(TransformLocalPositionToWorld(Parameters,dfpos)) - CameraPosWS;float dftracedist = 1; float dfshadow = 1;float curdist = 0;float DistanceAlongTrace = 0;for (int d = 0; d < DFSSteps; d++){DistanceAlongTrace += curdist;curdist = GetDistanceToNearestSurfaceGlobal(dfpos);float SphereSize = DistanceAlongTrace * LightTangent;dfshadow = min( saturate(curdist/SphereSize),dfshadow);dfpos.xyz += LightVectorWS * dftracedist * curdist;dftracedist *= 1.0001;}cursample = 1 -exp(-cursample * Density);lightenergy += exp(-shadowdist * ShadowDensity) * cursample * transmittance * LightColor * dfshadow;transmittance *= 1-cursample;shadowdist = 0;Lpos = CurPos + float3(0,0,0.025);float Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;shadowdist += Lsample;Lpos = CurPos + float3(0,0,0.05);Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;shadowdist += Lsample;Lpos = CurPos + float3(0,0,0.15);Lsample = PseudoVolumeTexture(Tex, TexSampler, saturate(Lpos), XYFrames, NumFrames).r;shadowdist += Lsample;lightenergy += exp(-shadowdist * AmbientDensity) *cursample * SkyColor * transmittance;}return float4(lightenergy, transmittance);

整理图表

老样子,我们做整理,消除意大利面可以让我们更直观的感受shader中的各种关系

  1. 将这一部分RayMarching的参数折叠为RayMarchingParameter
    在这里插入图片描述
    在这里插入图片描述

  2. 打包环境和常量参数Constant
    在这里插入图片描述
    在这里插入图片描述

  3. 整理自阴影距离场的变量SelfShadow
    在这里插入图片描述
    在这里插入图片描述

  4. 打包投影的参数ShadowRayParameter
    在这里插入图片描述
    在这里插入图片描述

  5. 最后整理一下ShadowRayMarching输入顺序,按功能排序
    在这里插入图片描述


当前Shader

抄抄党注目

模型

在这里插入图片描述

长宽高100cm,轴居中,双面双材质ID的Cube模型

本文附下载

预览贴图

在这里插入图片描述

长宽高100cm,轴居中,双面双材质ID的Cube模型。

本文附下载

材质球

M_VolRayMarching
MI_VolRayMarching
MI_VolRayMarching_Shadow

父子关系
子实例材质
子实例材质
MI_VolRayMarching
M_VolRayMarching
MI_VolRayMarching_Shadow

在这里插入图片描述

M_VolRayMarching

细节

在这里插入图片描述

图表

在这里插入图片描述

MI_VolRayMarching

父材质为M_VolRayMarching

MI_VolRayMarching_Shadow

父材质为MI_VolRayMarching

  • 细节:
    在这里插入图片描述

http://www.lryc.cn/news/469833.html

相关文章:

  • 地球村上一些可能有助于赚钱的20个思维方式
  • 0基础入门matlab
  • 【前端】实操tips集合
  • 基于Springboot+Vue 传统文化管理系统(源码+LW+部署讲解+数据库+ppt)
  • 质量漫谈一
  • 个体化神经调控 Neurolnavigation介绍
  • 02-RT1060 双ADC采样+eDMA传输
  • 单值集合总复习
  • Pyside6 布局管理器(4)--- QGridLayout的使用
  • 从GPT定制到Turbo升级再到Assistants API,未来AI世界,你准备好了吗?
  • 「漏洞复现」BladeX企业级开发平台 tenant/list SQL 注入漏洞复现(CVE-2024-33332)
  • 基于SSM的消防物资存储系统【附源码】
  • Pseudo Multi-Camera Editing 数据集:通过常规视频生成的伪标记多摄像机推荐数据集,显著提升模型在未知领域的准确性。
  • 认识一下 Mochi-1--最新的免费开源人工智能视频模型
  • Spring 的事务传播机制
  • 线性代数(1)——线性方程组的几何意义
  • 写给自己的一些心得体会
  • 论文阅读(二十九):Multi-scale Interactive Network for Salient Object Detection
  • 常见存储器及其特点
  • 《向量数据库指南》——text-embedding-3-large与Mlivus Cloud打造语义搜索新纪元
  • 通过 Bytebase API 查看数据库审计日志
  • # 渗透测试# 1.安全见闻(6)通讯协议
  • [Gdiplus/Gdi]_[中级]_[实现多行文本的多种颜色绘制-富文本绘制]
  • Ubuntu如何创建一个子用户并赋与管理员权限
  • 【Linux | IO多路复用】epoll的底层原理详解
  • npm run serve 提示异常Cannot read property ‘upgrade‘ of undefined
  • Muggle OCR 是一个高效的本地OCR(光学字符识别)模块
  • 【SpringBoot】万字源码解析——启动流程
  • Nginx 配置初步 下
  • 可视化ETL平台-Kettle的安装及简单使用