当前位置: 首页 > news >正文

LeetCode题练习与总结:4的幂--342

一、题目描述

给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。

整数 n 是 4 的幂次方需满足:存在整数 x 使得 n == 4^x

示例 1:

输入:n = 16
输出:true

示例 2:

输入:n = 5
输出:false

示例 3:

输入:n = 1
输出:true

提示:

  • -2^31 <= n <= 2^31 - 1

二、解题思路

要判断一个整数是否是 4 的幂次方,我们可以利用以下性质:

  1. 4 的幂次方一定是正数。
  2. 4 的幂次方的二进制表示中,只有一个 1,且这个 1 出现在奇数位置上(从右边开始计数,第 1、3、5、… 位)。

基于以上性质,我们可以采用以下步骤进行判断:

  1. 首先判断 n 是否大于 0,如果不大于 0,直接返回 false。
  2. 然后判断 n 的二进制表示中是否只有一个 1。这可以通过 n & (n - 1) 来判断,如果结果为 0,说明 n 只有一个 1。
  3. 最后判断这个 1 是否出现在奇数位置上。可以通过与一个特殊的数进行按位与操作来判断,这个特殊的数是一个只在奇数位置上为 1 的数,例如 0x55555555(十六进制)。

三、具体代码

class Solution {public boolean isPowerOfFour(int n) {// 0x55555555 是一个特殊的数,它的二进制表示为:01010101010101010101010101010101// 只在奇数位置上有 1,可以用来判断 4 的幂次方的 1 是否在奇数位置上return n > 0 && (n & (n - 1)) == 0 && (n & 0x55555555) != 0;}
}

这段代码首先判断 n 是否大于 0,然后通过 n & (n - 1) 判断 n 是否只有一个 1,最后通过 n & 0x55555555 判断这个 1 是否在奇数位置上。如果这三个条件都满足,则 n 是 4 的幂次方。

四、时间复杂度和空间复杂度

1. 时间复杂度

在这个函数中,我们执行了以下操作:

  • n > 0:这是一个常数时间的比较操作,时间复杂度为 O(1)。
  • (n & (n - 1)) == 0:这是一个位操作,它会持续执行直到 n 变为 0。在最坏的情况下,n 是 2 的幂次方但不是 4 的幂次方,那么这个操作会执行 log2(n) 次(因为每次操作都会移除 n 的最低位的 1),所以这个操作的时间复杂度是 O(log n)。
  • (n & 0x55555555) != 0:这是一个按位与操作,它也是常数时间操作,时间复杂度为 O(1)。

由于这些操作是顺序执行的,所以整个函数的时间复杂度取决于最耗时的操作,即 O(log n)。

2. 空间复杂度

在这个函数中:

  • 我们没有使用任何额外的数据结构(如数组、集合、栈等)。
  • 我们只使用了几个整型变量 n(n - 1) 和 0x55555555,这些变量占用的空间是常数。

因此,空间复杂度为 O(1),表示算法的额外空间需求不随输入规模增长而增长。

五、总结知识点

  • 位操作符(Bitwise Operators):

    • &(按位与操作符):用于比较两个整数的二进制表示,只有在两个比较位都为 1 时,结果位才为 1。
    • -(减法操作符):用于计算两个数的差,这里用于 (n - 1)
  • 逻辑操作符(Logical Operators):

    • >(大于操作符):用于比较两个数的大小。
    • ==(等于操作符):用于比较两个数的值是否相等。
    • !=(不等于操作符):用于比较两个数的值是否不相等。
    • &&(逻辑与操作符):用于连接两个布尔表达式,只有两个表达式都为 true 时,结果才为 true。
  • 特殊数值:

    • 0x55555555:这是一个十六进制常量,其二进制表示为 01010101010101010101010101010101,这个数值用于检测一个数的二进制表示中 1 的位置是否只在奇数索引上。
  • 整数与二进制表示:

    • 整数在计算机中是以二进制形式存储的,代码中的位操作是基于整数的二进制表示进行的。
  • 递归下降:

    • (n & (n - 1)) == 0 这个操作可以看作是一种递归下降的过程,每次操作都会将 n 的最低位的 1 置为 0,直到 n 变为 0。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

http://www.lryc.cn/news/469644.html

相关文章:

  • ubuntu GLEW could not be initialized : Unknown error
  • 51c~目标检测~合集1
  • 前端工程化面试题
  • 【Visual Studio】下载安装 Visual Studio Community 并配置 C++ 桌面开发环境的图文教程
  • 010Editor:十六进制编辑器
  • Vscode中Github Copilot无法使用
  • <项目代码>YOLOv8表情识别<目标检测>
  • 利用Msfvenom实现对Windows的远程控制
  • Java Iterator和for区别详解和常见问题及解决方式
  • 川渝地区软件工程考研择校分析
  • 快捷键记忆
  • Flutter鸿蒙next 状态管理高级使用:深入探讨 Provider
  • JMeter实战之——模拟登录
  • 智能台灯设计(一)原理图设计
  • 数据库查询返回结果集及其元数据信息:ResultSet 和 ResultSetMetaData 深度解析
  • 2.插入排序(斗地主起牌)
  • 漫谈编程小白如何成为大神:夯实基础,开启通神之路
  • 基于机器学习的个性化电影推荐系统【源码+安装+讲解+售后+文档】
  • 企业如何配合好等级保护测评工作?
  • Could not find artifact cn.hutool:hutool-all:jar:8.1 in central 导入Hutool报错
  • 【功能安全】汽车功能安全个人认证证书
  • axios直接上传binary
  • 量化交易API接口是什么?如何申请和应用?
  • 语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)
  • Python爬虫:从入门到精通
  • Web组态软件
  • Java中为什么要私有化构造方法
  • 【大数据学习 | kafka】kafuka的基础架构
  • 2-petalinux2018.3摸索记录-petalinux rootfs
  • RHCE作业二