当前位置: 首页 > news >正文

导出BERT句子模型为ONNX并推理

在深度学习中,将模型导出为ONNX(Open Neural Network Exchange)格式并利用ONNX进行推理是提高推理速度和模型兼容性的一种常见做法。本文将介绍如何将BERT句子模型导出为ONNX格式,并使用ONNX Runtime进行推理,具体以中文文本处理为例。

1. 什么是ONNX?

ONNX 是一种开放的神经网络交换格式,旨在促进深度学习模型在不同平台和工具之间的共享和移植。它支持包括PyTorch、TensorFlow等多种主流框架,可以通过ONNX Runtime库高效推理。通过将模型转换为ONNX格式,我们可以获得跨平台部署的优势,并利用ONNX Runtime加速推理过程。

2. 准备工作

在导出和推理之前,需要安装以下库:

pip install torch transformers onnx onnxruntime

3. 导出BERT句子模型为ONNX

首先,我们将使用HuggingFace的transformers库加载一个预训练的BERT句子模型(text2vec-base-chinese),然后将其导出为ONNX格式。以下是导出模型的步骤和代码:

3.1 导出模型的代码

import torch
from transformers import BertTokenizer, BertModel# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')# 读取要处理的句子
with open("corpus/words_nlu.txt", 'rt', encoding='utf-8') as f:nlu_words = [line.strip() for line in f.readlines()]
nlu_words.insert(0, "摄像头打开一下")  # 插入要比较的句子# 对句子进行编码
encoded_input = tokenizer(nlu_words, padding=True, truncation=True, return_tensors='pt')# 设置ONNX模型的保存路径
onnx_model_path = "text2vec-base-chinese.onnx"
model.eval()# 导出模型为ONNX格式
with torch.no_grad():torch.onnx.export(model,(encoded_input['input_ids'], encoded_input['attention_mask']),onnx_model_path,input_names=['input_ids', 'attention_mask'],output_names=['last_hidden_state'],opset_version=14,dynamic_axes={'input_ids': {0: 'batch_size', 1: 'sequence_length'},'attention_mask': {0: 'batch_size', 1: 'sequence_length'},'last_hidden_state': {0: 'batch_size', 1: 'sequence_length'}})
print(f"ONNX模型已导出到 {onnx_model_path}")

在这段代码中,我们将text2vec-base-chinese模型导出为ONNX格式,指定了输入和输出的名称,并使用了动态轴设置(如批大小和序列长度),这样可以处理不同长度的句子。

4. 使用ONNX进行推理

导出模型后,我们可以使用ONNX Runtime进行推理。以下是基于ONNX的推理代码。该代码实现了对输入文本进行预处理、调用ONNX模型进行推理、以及对模型输出进行均值池化处理。

4.1 ONNX推理代码

import numpy as np
from onnxruntime import InferenceSessionclass PIPE_NLU:def __init__(self, model_path="text2vec-base-chinese.onnx", vocab_path="vocab.txt") -> None:self.model_path = model_pathself.vocab_path = vocab_pathself.vocab = self.load_vocab(vocab_path)self.onnx_session = InferenceSession(model_path)print("成功加载NLU解码器")def load_vocab(self, vocab_path):"""加载BERT词汇表"""vocab = {}with open(vocab_path, 'r', encoding='utf-8') as f:for idx, line in enumerate(f):token = line.strip()vocab[token] = idxreturn vocabdef tokenize(self, text):"""将文本分词为BERT的input_ids"""tokens = ['[CLS]']for char in text:if char in self.vocab:tokens.append(char)else:tokens.append('[UNK]')tokens.append('[SEP]')input_ids = [self.vocab[token] if token in self.vocab else self.vocab['[UNK]'] for token in tokens]return input_idsdef preprocess(self, texts, max_length=128):"""对输入文本进行预处理"""input_ids_list = []attention_mask_list = []for text in texts:input_ids = self.tokenize(text)if len(input_ids) > max_length:input_ids = input_ids[:max_length]else:input_ids += [0] * (max_length - len(input_ids))attention_mask = [1 if idx != 0 else 0 for idx in input_ids]input_ids_list.append(input_ids)attention_mask_list.append(attention_mask)inputs = {'input_ids': np.array(input_ids_list, dtype=np.int64),'attention_mask': np.array(attention_mask_list, dtype=np.int64)}return inputsdef mean_pooling_numpy(self, model_output, attention_mask):"""对模型输出进行均值池化"""token_embeddings = model_outputinput_mask_expanded = np.expand_dims(attention_mask, -1).astype(float)return np.sum(token_embeddings * input_mask_expanded, axis=1) / np.clip(np.sum(input_mask_expanded, axis=1), a_min=1e-9, a_max=None)def compute_embeddings(self, texts):"""计算输入文本的句子嵌入"""onnx_inputs = self.preprocess(texts)onnx_outputs = self.onnx_session.run(None, onnx_inputs)last_hidden_state = onnx_outputs[0]sentence_embeddings = self.mean_pooling_numpy(last_hidden_state, onnx_inputs['attention_mask'])sentence_embeddings = sentence_embeddings / np.linalg.norm(sentence_embeddings, axis=1, keepdims=True)return sentence_embeddings

4.2 推理流程

  1. 加载ONNX模型:通过InferenceSession加载ONNX模型。
  2. 加载词汇表:读取BERT的词汇表,用于将输入文本转化为模型可接受的input_ids格式。
  3. 文本预处理:将输入的文本进行分词、截断或填充为固定长度,并生成相应的注意力掩码attention_mask
  4. 模型推理:通过ONNX Runtime调用模型,获取句子的最后隐藏状态输出。
  5. 均值池化:对最后的隐藏状态进行均值池化,计算出句子的嵌入向量。
  6. 归一化嵌入:将句子嵌入向量进行归一化,使得向量长度为1。

5. 总结

通过将BERT模型导出为ONNX并使用ONNX Runtime进行推理,我们可以大幅度提升推理速度,同时保持了高精度的句子嵌入计算。在实际应用中,ONNX Runtime的跨平台特性和高性能表现使其成为模型部署和推理的理想选择。

使用上述步骤,您可以轻松将BERT句子模型应用到各种自然语言处理任务中,如语义相似度计算、文本分类和句子嵌入等。

http://www.lryc.cn/news/468854.html

相关文章:

  • Unity Apple Vision Pro 自定义手势识别交互
  • 【Javaee】网络原理—TCP协议的核心机制
  • Unity插件-Intense TPS 讲解
  • 【p2p、分布式,区块链笔记 Blockchain】truffle001 以太坊开发框架truffle初步实践
  • 网站被浏览器提示“不安全”,如何快速解决
  • java -jar启动 报错: Error: Unable to access jarfile
  • Servlet(三)-------Cookie和session
  • 最新物流行业CRM系统应用数字化解决方案
  • [deadlock]死锁导致的设备登录无响应问题
  • 2024年10月21日计算机网络,乌蒙第一部分
  • ESlint代码规范
  • 【Vue.js设计与实现】第三篇第11章:渲染器-快速 Diff 算法-阅读笔记
  • 材质变体 PSO学习笔记
  • 2024年【烟花爆竹储存】考试及烟花爆竹储存复审模拟考试
  • 文件夹操作
  • 如何制作一台自己想要的无人机?无人机改装调试技术详解
  • Linux -- 进程间通信、初识匿名管道
  • 网站的SSL证书快到期了怎么办?怎么续签?
  • 解決爬蟲代理連接的方法
  • Prometheus 监控Harbor
  • SQL 干货 | SQL 半连接
  • 洛谷 P1226:【模板】快速幂
  • nginx常规操作
  • Docker镜像不能访问
  • TCP simultaneous open测试
  • Spring 配置文件动态读取pom.xml中的属性
  • Konva 组,层级
  • vue图片加载失败的图片
  • 终止,半成收入来自海外,收入可持续性被质疑
  • 日常记录,使用springboot,vue2,easyexcel使实现字段的匹配导入