当前位置: 首页 > news >正文

RWSENodeEncoder, KER_DIM_PE(lrgb文件中的encoders文件中的kernel.py)

该代码实现了一个基于核的节点编码器 KernelPENodeEncoder,用于在图神经网络中将特定的核函数编码(例如随机游走结构编码 RWSE)与节点特征相结合。通过将预先计算的核统计信息(如 RWSE 等)与原始节点特征结合,该编码器可以帮助模型捕捉图中节点的结构信息。该代码还定义了一个派生类 RWSENodeEncoder,这是一个具体实现,用于对节点执行随机游走结构编码。

编码器允许使用不同的模型(例如线性模型或 MLP)对核统计信息进行处理,并且支持根据需要对节点特征进行线性扩展。最终,节点特征和核特征被拼接成一个完整的节点嵌入。

from lrgb.encoders.kernel import RWSENodeEncoder, KER_DIM_PE

import torch
import torch.nn as nnKER_DIM_PE = 28
NUM_RW_STEPS = 20
MODEL = 'Linear'
LAYERS = 3
RAW_NORM_TYPE = 'BatchNorm'
PASS_AS_VAR = Falseclass KernelPENodeEncoder(torch.nn.Module):"""Configurable kernel-based Positional Encoding node encoder.The choice of which kernel-based statistics to use is configurable throughsetting of `kernel_type`. Based on this, the appropriate config is selected,and also the appropriate variable with precomputed kernel stats is thenselected from PyG Data graphs in `forward` function.E.g., supported are 'RWSE', 'HKdiagSE', 'ElstaticSE'.PE of size `dim_pe` will get appended to each node feature vector.If `expand_x` set True, original node features will be first linearlyprojected to (dim_emb - dim_pe) size and the concatenated with PE.Args:dim_emb: Size of final node embeddingexpand_x: Expand node features `x` from dim_in to (dim_emb - dim_pe)"""kernel_type = None  # Instantiated type of the KernelPE, e.g. RWSEdef __init__(self, dim_in, dim_emb, expand_x=True):super().__init__()if self.kernel_type is None:raise ValueError(f"{self.__class__.__name__} has to be "f"preconfigured by setting 'kernel_type' class"f"variable before calling the constructor.")dim_pe = KER_DIM_PE  # Size of the kernel-based PE embeddingnum_rw_steps = NUM_RW_STEPSmodel_type = MODEL.lower()  # Encoder NN model type for PEsn_layers = LAYERS  # Num. layers in PE encoder modelnorm_type = RAW_NORM_TYPE.lower()  # Raw PE normalization layer typeself.pass_as_var = PASS_AS_VAR  # Pass PE also as a separate variableif dim_emb - dim_pe < 0: # formerly 1, but you could have zero feature sizeraise ValueError(f"PE dim size {dim_pe} is too large for "f"desired embedding size of {dim_emb}.")if expand_x and dim_emb - dim_pe > 0:self.linear_x = nn.Linear(dim_in, dim_emb - dim_pe)self.expand_x = expand_x and dim_emb - dim_pe > 0if norm_type == 'batchnorm':self.raw_norm = nn.BatchNorm1d(num_rw_steps)else:self.raw_norm = Noneactivation = nn.ReLU  # register.act_dict[cfg.gnn.act]if model_type == 'mlp':layers = []if n_layers == 1:layers.append(nn.Linear(num_rw_steps, dim_pe))layers.append(activation())else:layers.append(nn.Linear(num_rw_steps, 2 * dim_pe))layers.append(activation())for _ in range(n_layers - 2):layers.append(nn.Linear(2 * dim_pe, 2 * dim_pe))layers.append(activation())layers.append(nn.Linear(2 * dim_pe, dim_pe))layers.append(activation())self.pe_encoder = nn.Sequential(*layers)elif model_type == 'linear':self.pe_encoder = nn.Linear(num_rw_steps, dim_pe)else:raise ValueError(f"{self.__class__.__name__}: Does not support "f"'{model_type}' e
http://www.lryc.cn/news/468567.html

相关文章:

  • 技术文档:基于微信朋友圈的自动点赞工具开发
  • kubernetes_pods资源清单及常用命令
  • 科目二侧方位停车全流程
  • 2024源鲁杯CTF网络安全技能大赛题解-Round2
  • 10.24学习
  • 社交媒体与客户服务:新时代的沟通桥梁
  • 设置虚拟机与windows间的共享文件夹
  • 微信小程序性能优化 ==== 合理使用 setData 纯数据字段
  • 【加密系统】华企盾DSC服务台提示:请升级服务器,否则可能导致客户端退回到旧服务器的版本
  • 直连南非,服务全球,司库直联再进一步
  • 【spring】从spring是如何避免并发下获取不完整的bean引发的思考 什么是双重检查锁 什么是java内存模型
  • 【计算机网络一】网络学习前置知识
  • nuScenes数据集使用的相机的外参和内参
  • 数据结构与算法:贪心算法与应用场景
  • 音频编解码器音频文件格式
  • FreeSWITCH JSON API
  • 学习docker第三弹------Docker镜像以及推送拉取镜像到阿里云公有仓库和私有仓库
  • 一文掌握Kubernates核心组件,构建智能容器管理集群
  • 正则表达式快速入门
  • 【小程序】-基础语法(二)
  • js 填充数组
  • AI创作3款软件分享,助力内容创作者高效产出优质作品
  • A survey of loss functions for semantic segmentation——论文笔记
  • docker部署es与kibana Mac
  • redis的渐进式哈希?说一下细节?------面试题分享
  • javaWeb项目-springboot+vue-车辆管理系统功能介绍
  • redis和memcached的区别
  • 构建安全基石:网络安全等级保护定级指南
  • PyQt 入门教程(3)基础知识 | 3.1、使用QtDesigner创建.ui文件
  • 解锁金融大门,你的基从备考秘籍全揭秘!