Java 遗传算法
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法,用于求解复杂的搜索和优化问题。在Java中实现遗传算法通常包括以下几个步骤:
- 初始化种群:生成一组随机解作为初始种群。
- 适应度评估:定义一个适应度函数,用于评估每个解的优劣。
- 选择:根据适应度选择适应度较高的个体作为父代,用于生成下一代。
- 交叉(Crossover):通过交换父代的部分基因来生成子代。
- 变异(Mutation):以一定的概率随机改变子代的基因,增加种群的多样性。
- 替代:用子代替代部分或全部父代,形成新的种群。
- 终止条件:设定终止条件(如达到最大迭代次数或适应度达到某个阈值),终止算法。
以下是一个简单的Java实现遗传算法的示例,用于解决一个优化问题(如最大化某个函数)。
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random; class Individual { private int[] genes; private double fitness; public Individual(int geneLength) { genes = new int[geneLength]; Random rand = new Random(); for (int i = 0; i < geneLength; i++) { genes[i] = rand.nextInt(2); // 0 or 1 } } public double getFitness() { return fitness; } public void setFitness(double fitness) { this.fitness = fitness; } public int[] getGenes() { return genes; } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (int gene : genes) { sb.append(gene); } return sb.toString(); }
} class GeneticAlgorithm { private static final int POPULATION_SIZE = 100; private static final int GENE_LENGTH = 10; private static final int MAX_GENERATIONS = 1000; private static final double MUTATION_RATE = 0.01; public static void main(String[] args) { List<Individual> population = initializePopulation(POPULATION_SIZE, GENE_LENGTH); for (int generation = 0; generation < MAX_GENERATIONS; generation++) { evaluateFitness(population); List<Individual> newPopulation = generateNewPopulation(population); population = newPopulation; // 输出当前最优解 Collections.sort(population, (i1, i2) -> Double.compare(i2.getFitness(), i1.getFitness())); System.out.println("Generation " + generation + ": Best Fitness = " + population.get(0).getFitness()); } } private static List<Individual> initializePopulation(int populationSize, int geneLength) { List<Individual> population = new ArrayList<>(); for (int i = 0; i < populationSize; i++) { population.add(new Individual(geneLength)); } return population; } private static void evaluateFitness(List<Individual> population) { for (Individual individual : population) { // 示例适应度函数:计算二进制字符串中1的个数(可以根据具体问题修改) int countOnes = 0; for (int gene : individual.getGenes()) { if (gene == 1) { countOnes++; } } individual.setFitness(countOnes); } } private static List<Individual> generateNewPopulation(List<Individual> population) { List<Individual> newPopulation = new ArrayList<>(); while (newPopulation.size() < POPULATION_SIZE) { Individual parent1 = selectParent(population); Individual parent2 = selectParent(population); Individual child = crossover(parent1, parent2); mutate(child); newPopulation.add(child); } return newPopulation; } private static Individual selectParent(List<Individual> population) { // 轮盘赌选择 double totalFitness = population.stream().mapToDouble(Individual::getFitness).sum(); double randomValue = new Random().nextDouble() * totalFitness; double cumulativeFitness = 0.0; for (Individual individual : population) { cumulativeFitness += individual.getFitness(); if (cumulativeFitness >= randomValue) { return individual; } } return population.get(population.size() - 1); // 如果没有匹配,返回最后一个 } private static Individual crossover(Individual parent1, Individual parent2) { int crossoverPoint = new Random().nextInt(parent1.getGenes().length); int[] childGenes = new int[parent1.getGenes().length]; System.arraycopy(parent1.getGenes(), 0, childGenes, 0, crossoverPoint); System.arraycopy(parent2.getGenes(), crossoverPoint, childGenes, crossoverPoint, parent2.getGenes().length - crossoverPoint); return new Individual() { { this.genes = childGenes; } }; } private static void mutate(Individual individual) { Random rand = new Random(); for (int i = 0; i < individual.getGenes().length; i++) { if (rand.nextDouble() < MUTATION_RATE) { individual.getGenes()[i] = 1 - individual.getGenes()[i]; // 0变1,1变0 } } }
}
注意事项
- 适应度函数:根据具体问题定义,这里示例的是计算二进制字符串中1的个数。
- 选择方法:这里使用了轮盘赌选择(Roulette Wheel Selection),但还有其他选择方法如锦标赛选择(Tournament Selection)等。
- 交叉和变异:交叉和变异操作的具体实现可以根据问题需求进行调整。
- 性能优化:可以根据实际需求对算法进行优化,比如使用精英保留策略(Elite Preservation)等。
这个示例展示了基本的遗传算法框架,你可以根据具体需求进行扩展和修改。