当前位置: 首页 > news >正文

买卖股票的最佳时机(动态规划方法总结)

总结一下,买卖股票系列的动态规划思想,贪心解法或者其他解法不做描述。

总结

121. 买卖股票的最佳时机 只有一次交易机会,每天有两种状态:持有股票和不持有股票;

122. 买卖股票的最佳时机 II 有多次交易机会,每天有两种状态:持有股票和不持有股票;

123. 买卖股票的最佳时机 III 至多两次交易机会,每天有 2*2=4 种状态:第一次持有股票;第一次不持有股票;第二次持有股票;第二次不持有股票;

188. 买卖股票的最佳时机 IV - 力扣(LeetCode)至多 k 次交易机会,与买卖股票 3 相比,每天有 2*k=2k 种状态:第一次持有股票;第一次不持有股票;第二次持有股票;第二次不持有股票... 第 k 次持有股票;第 k 次不持有股票。

买卖股票的最佳时机 Ⅰ

题目描述:给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

买卖股票系列的第一题,核心是只有一次交易机会

dp 数组建立:

用两个 dp 数组来描述:

  • dp[i][0] 第 i 天持有股票的最大剩余现金
  • dp[i][1] 第 i 天不持有股票的最大剩余现金

重要的是理解这里的“剩余现金”是什么含义:一开始,我们持有的现金为 0,买入一支股票i后,我们持有股票的剩余现金就是-prices[i],而在第 i+k 天卖出股票后,我们不持有股票的剩余现金就是 prices[i+k] - prices[i],也就是交易后的利润。

dp[0][0] = -prices[0]; 因为第 0 天要持有股票,只能购入第一支股票,剩余现金为 -prices[0]

dp[0][1] = 0; 因为第 0 天只能买入股票,无法卖出股票,因此 dp[0][1] 初始化为 0。


递推公式:

  • dp[i][0] = max(dp[i-1][0], -prices[i]);第 i 天持有股票,有两种情况:
    • 第一种,第 i不买入股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][0] = dp[i-1][0];
    • 第二种,第 i买入股票,那么第 i天持有股票的剩余现金就是 0 减去第 i 天的股票价格,即dp[i][0] = -prices[i];
    • 两者取最大值。
  • dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);同样有两种情况:
    • 第一种,i 天前已经不持有股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][1] = dp[i-1][1];
    • 第二种,i 天当天才不持有股票,那么第 i天持有股票的剩余现金就是第 i 天的股票价格 + 第 i-1 天持有股票的最大剩余现金,即dp[i][1] = prices[i] + dp[i-1][0];
    • 两者取最大值。

完整代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();// dp[i][0] 第 i 天持有股票的最大剩余现金;// dp[i][1] 第 i 天不持有股票的最大剩余现金。vector<vector<int>> dp(n, vector<int>(2, 0));dp[0][0] = -prices[0];dp[0][1] = 0;for (int i = 1; i < n; ++i) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[n - 1][1];}
};

买卖股票的最佳时机 Ⅱ

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

买卖股票系列的第二题,和第一题的不同之处在于,可以多次买卖股票

dp 数组建立:

用两个 dp 数组来描述:

  • dp[i][0] 第 i 天持有股票的最大剩余现金
  • dp[i][1] 第 i 天不持有股票的最大剩余现金

dp[0][0] = -prices[0]; 因为第 0 天要持有股票,只能购入第一支股票,剩余现金为 -prices[0]

dp[0][1] = 0; 因为第 0 天不管是不买股票,还是买了再卖出股票,都无法获得利润,因此 dp[0][1] 初始化为 0。


递推公式:

  • dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);第 i 天持有股票,有两种情况:
    • 第一种,第 i不买入股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][0] = dp[i-1][0];
    • 第二种,第 i买入股票,那么第 i-1 天就不能持有股票,因为在这道题目中连续购买两支股票没有意义,只会多花钱。第 i天持有股票的剩余现金就是 第 i-1 天不持有股票的最大剩余现金减去第 i 天的股票价格,即dp[i][0] = dp[i-1][1] - prices[i];
    • 两者取最大值。
  • dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);同样有两种情况:
    • 第一种,i 天前已经不持有股票,那么第 i天持有股票的剩余现金就是第 i-1天持有股票的剩余现金,即dp[i][1] = dp[i-1][1];
    • 第二种,i 天当天才不持有股票,同理,第 i-1 天必须是持有股票的,没有持有股票,怎么卖出股票呢?第 i天持有股票的剩余现金就是第 i 天的股票价格 + 第 i-1 天持有股票的最大剩余现金,即dp[i][1] = prices[i] + dp[i-1][0];
    • 两者取最大值。

完整代码:

class Solution {
public:int maxProfit(vector<int>& prices) {// 动态规划// dp[i][0] 表示第i天持有股票的最少消耗// dp[i][1] 表示第i天持有股票的最大利润vector<vector<int>> dp(prices.size(), vector<int>(2, 0));dp[0][0] = -prices[0];dp[0][1] = 0;for (int i = 1; i < prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[prices.size() - 1][1];}
};

总结:

本题和121. 买卖股票的最佳时机的代码几乎一样,唯一的区别在:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

因为本题的股票可以买卖多次! 所以买入股票的时候,剩余现金可能包含之前买卖的所得利润:dp[i - 1][1],所以 dp[i][0] 可能会等于 dp[i-1][1] - prices[i]

想到到这一点,对这两道题理解的就比较深刻了。

买卖股票的最佳时机 Ⅲ

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

这题,要求我们在购入股票时,手上不能持有其他股票,且最多只能进行两笔交易

前两道题,同一天只有两种状态:持有股票或者不持有股票

对于这道题,同一天可以有 4 种状态:

  1. 第一次持有股票
  2. 第一次不持有股票
  3. 第二次持有股票
  4. 第二次不持有股票

那么 dp[i][j] 就表示第 i 天的 j 状态下的最大剩余现金。

dp[0][0] = -prices[0];第 0 天第一次买入;

dp[0][1] = 0;

dp[0][2] = -prices[0];第 0 天第二次买入(第一次买入后卖出,再买入,有点蛇精病,但是为了做题,只能这么买了)

dp[0][3] = 0;


递推公式:

  1. 第 i 天第一次持有股票的最大剩余金额 = max(第 i-1 天第一次持有股票的最大剩余金额, -第 i 天股票价格)
  2. 第 i 天第一次不持有股票的最大剩余金额 = max(第 i-1 天第一次不持有股票的最大剩余金额, 第 i 天股票价格 + 第 i-1 天第一次持有股票的最大剩余金额)
  3. 第 i 天第二次持有股票的最大剩余金额 = max(第 i-1 天第二次持有股票的最大剩余金额, 第 i-1 天第一次不持有股票的最大剩余金额 - 第 i 天股票价格)
  4. 第 i 天第二次不持有股票的最大剩余金额 = max(第 i-1 天第二次不持有股票的最大剩余金额, 第 i-1 天第二次持有股票的最大剩余金额 + 第 i 天股票价格)
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);;

完整代码:

注意,两次卖出的状态剩余现金最大一定是最后一次卖出。可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出的剩余现金一定是最多的。

class Solution {
public:int maxProfit(vector<int>& prices) {// 动态规划// 1. 第一次持有股票// 2. 第一次不持有股票// 3. 第二次持有股票// 4. 第二次不持有股票vector<vector<int>> dp(prices.size(), vector<int>(4, 0));dp[0][0] = -prices[0];dp[0][1] = 0;dp[0][2] = -prices[0];dp[0][3] = 0;for (int i = 1; i < prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);;}int result = max( dp[prices.size() - 1][1], dp[prices.size() - 1][3] );return result;}
};

买卖股票的最佳时机 Ⅳ

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

与 123. 买卖股票的最佳时机 III 不同,这一次,我们最多可以完成 k 笔交易

那如果按照 3 的思路,我们可以用 dp[i][2 * k] 来描述第 i 天的 2k 种不同状态。

完整代码:

class Solution {
public:int maxProfit(int k, vector<int>& prices) {// 动态规划// 1. 第一次持有股票 dp[i][0]// 2. 第一次不持有股票 dp[i][1]// 3. 第二次持有股票 dp[i][2]// 4. 第二次不持有股票 dp[i][3]// ...//      k次持有 dp[i][2 * k - 2]//      k次不持有 dp[i][2 * k - 1]vector<vector<int>> dp(prices.size(), vector<int>(2 * k, 0));for (int i = 0; i < 2 * k; i+=2) {dp[0][i] = -prices[0];}for (int i = 1; i < prices.size(); ++i) {// 计算第一次的两个状态dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);for (int j = 2; j <= k; ++j) {// 计算第2次到第k次的所有状态dp[i][2 * j - 2] = max(dp[i - 1][2 * j - 2], dp[i - 1][2 * j - 3] - prices[i]);dp[i][2 * j - 1] = max(dp[i - 1][2 * j - 1], dp[i - 1][2 * j - 2] + prices[i]);}}int result = dp[prices.size() - 1][2 * k - 1];return result;}
};
http://www.lryc.cn/news/463044.html

相关文章:

  • KubeSphere安装mysql8.4.0
  • SpringBoot项目热部署-devtools
  • 从MySQL到OceanBase离线数据迁移的实践
  • ifconfig 和 ip addr
  • NCCL报错
  • 域7:安全运营 第16章 安全运营管理
  • 研发线上事故风险解读之数据库存储
  • react hooks中在setState后输出state为啥没有变化,如何解决
  • C++设计模式——代理模式
  • docker 复制文件,清除不再使用数据导出以及导出文件系统
  • 【Vue】Vue3.0(十一)Vue 3.0 中 computed 计算属性概念、使用及示例
  • 【第三版 系统集成项目管理工程师】第17章 法律法规和标准规范
  • 安装 LLM 编程工具 cursor
  • Java链式编程的定义、例子、使用方法、实际应用场景、自动装配构造
  • 用 Git Stash 临时保存修改,轻松切换任务!
  • Android 下通过触发 SIGTRAP 信号实现反调试
  • 【MySQL】 表的增删操作
  • 新生入门季 | 学习生物信息分析,如何解决个人电脑算力不足的问题?
  • 20255 - 中医方剂学 - 考研 - 执业
  • 【Vue.js设计与实现】第三篇第9章:渲染器-简单Diff算法-阅读笔记
  • 服务器软件之Tomcat
  • Flutter包管理(三)
  • CGNS资料
  • 论文阅读(十六):Deep Residual Learning for Image Recognition
  • Dubbo 序列化方式
  • 如何替换OCP节点(二):使用 antman脚本 | OceanBase应用实践
  • 15.JVM垃圾收集算法
  • 软件工程:图书管理系统甘特图
  • 视频的编解码格式
  • 网络资源模板--Android Studio 实现简易新闻App