当前位置: 首页 > news >正文

较新(24.3)加速Diffusion模型推理的方法,附带参考文献

1.采用fast ODE solvers:

Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusionbased generative models. In: Conference on Neural Information Processing Systems (NeurIPS) (2022)

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Conference on Neural Information Processing Systems (NeurIPS) 35, 5775–5787 (2022) 

2.将原来的扩散模型作为教师,蒸馏到更快的少步学生网络

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon, S., Ho, J., Salimans, T.: On distillation of guided diffusion models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models. In: International Conference on Learning Representations (ICLR) (2022)

3.一些采用一致性模型训练

Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models. In: International Conference on Machine Learning (ICML) (2023)

Luo, S., Tan, Y., Huang, L., Li, J., Zhao, H.: Latent consistency models: Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378 (2023)

、对抗学习

Sauer, A., Lorenz, D., Blattmann, A., Rombach, R.: Adversarial diffusion distillation. arXiv preprint arXiv:2311.17042 (2023)

Xu, Y., Zhao, Y., Xiao, Z., Hou, T.: Ufogen: You forward once large scale text-toimage generation via diffusion gans. arXiv preprint arXiv:2311.09257 (2023)1

、变量得分蒸馏

Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., Zhu, J.: Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. Conference on Neural Information Processing Systems (NeurIPS) 36 (2024)

Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand, F., Freeman, W.T., Park, T.: One-step diffusion with distribution matching distillation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)、

矫正流

Liu, X., Gong, C., Liu, Q.: Flow straight and fast: Learning to generate and transfer data with rectified flow. arXiv preprint arXiv:2209.03003 (2022)

Liu, X., Zhang, X., Ma, J., Peng, J., et al.: Instaflow: One step is enough for highquality diffusion-based text-to-image generation. In: International Conference on Learning Representations

或者它们的结合

Liu, X., Zhang, X., Ma, J., Peng, J., et al.: Instaflow: One step is enough for highquality diffusion-based text-to-image generation. In: International Conference on Learning Representations

4.改用GAN做生成

. Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: Stylegan-t: Unlocking the power of gans for fast large-scale text-to-image synthesis. In: International Conference on Machine Learning (ICML) (2023)

Kang, M., Zhu, J.Y., Zhang, R., Park, J., Shechtman, E., Paris, S., Park, T.: Scaling up gans for text-to-image synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

http://www.lryc.cn/news/462880.html

相关文章:

  • 硬件产品经理的开店冒险之旅(上篇)
  • 「C++」类和对象最终回
  • ELK:Elasticsearch、Logstash、Kibana Spring Cloud Sleuth和Spring Cloud Zipkin
  • 动态规划17:123. 买卖股票的最佳时机 III
  • 华为OD机试真题---预定酒店
  • 力扣242.有效的字母异位词
  • Android IP路由策略和防火墙
  • MySQL insert ... select 语句锁表导致数据写不进去
  • Android摄像头Camera2和Camera1的一些总结
  • 【Linux 从基础到进阶】Linux中的用户认证与授权
  • 用户界面设计:视觉美学与交互逻辑的融合
  • ZK集群搭建:详细步骤与注意事项
  • 如何将csdn文章导出为pdf
  • 【艾思科蓝】Imagen:重塑图像生成领域的革命性突破
  • java类和对象(下): 封装 static成员 内部类
  • 外包干了3周,技术退步太明显了。。。。。
  • VIVO算法题——数位之积
  • OPC Router快速打通设备层与influxDB数据通讯
  • 鸿蒙开发 四十四 ArkTs BuilderParam传递UI(二)
  • 同期数分析-留存率
  • Java前后端交互:构建现代Web应用
  • vue3中用axios请求怎么添加cookie
  • informer学习笔记
  • Elasticsearch介绍和使用
  • 【Flutter】基础入门:代码基本结构
  • 如何进行数据库缩容 | OceanBase应用实践
  • 机器学习和深度学习的差别
  • RAG拉满-上下文embedding与大模型cache
  • 前端学习---(2)CSS基础
  • Pandas常用计算函数